
Journal of Computational Information Systems 11: 15 (2015) 5415–5423
Available at http://www.Jofcis.com

A Records Recovery Method for InnoDB Tables Based on

Reconstructed Table Definition Files

Pianpian SUN∗, Ming XU, Jian XU, Yizhi REN, Haiping ZHANG,
Ning ZHENG

College of Computer, Hangzhou Dianzi University, Hangzhou 310018, China

Abstract

InnoDB is the most widely used storage engine for MySQL. It holds a large amount of information which
is of great significance to records recovery. However, existent records recovery method for InnoDB tables
gets less or inaccuracy records because of the less or inaccuracy table structures acquired from InnoDB
data dictionary. To solve that problem, the proposed method in this paper uses the file carving technology
to recover the continuous table definition files from the disk raw image and then the table structures are
reconstructed by analyzing the carved table definition files. Finally records can be successfully recovered
by applying the table structure on the matched data pages. The experimental results demonstrate that
the efficiency of the proposed method with high precision and recall.

Keywords: InnoDB; Records Recovery; Table Structure; File Carving

1 Introduction

InnoDB is one of the best-known open-source storage engines for MySQL. InnoDB is ACID
compliant and provides transactions, row-level locking, MVCC, automatic recovery and data cor-
ruption detection. It is widely used in MySQL-based Web, e-commerce, financial systems, health
care, and retail applications so a significant amount of valuable information such as patients and
customers is stored in InnoDB database. If the tables in InnoDB databases are dropped by a
hacker, data recovery from the raw image or related files is very useful for database forensic anal-
ysis [1-3]. Unlike file recovery, database recovery is more challenging [4] because of databases’
complex structures. Records are recovered with both of the table structure and leaf pages. The
accurate table structure is very important to recover records because it can correctly interpret
binary records from leaf pages into human-readable information and provide the records’ size in
order to extract compact records from leaf pages. When the tables are dropped, the table struc-
ture can’t be gotten via SQL interface. From InnoDB data dictionary existent records recovery
methods get less table structures or inaccurate table structure. A new method of recovering

∗Corresponding author.
Email address: sunpian1@163.com (Pianpian SUN).

1553–9105 / Copyright © 2015 Binary Information Press
DOI: 10.12733/jcis14870
August 1, 2015



5416 P. Sun et al. /Journal of Computational Information Systems 11: 15 (2015) 5415–5423

records by acquiring the table structure from the carved table definition files in raw image is
proposed in this paper.

The rest of this paper is structured as below: Section 2 introduces related work. Section 3
describes structure of the InnoDB tables. Section 4 details the proposed method for recovering
InnoDB table records. Section 5 gives a detailed demonstration on the capabilities of the recovery
method. Section 6 concludes the paper and gives an outlook to future plans exploring another
location storing the table structure to recover records of InnoDB tables.

2 Related Work

Clearly, the analysis of the structure of InnoDB database is a precondition for records recovery.
While MySQL documentation provides a good starting point [5], it is important to understand
in detail how InnoDB database is built. The detailed analysis of InnoDB table space file is
described in [6] by Jemery Cole. Peter Frhwirt et al. [1] describe the format of table definition
files and leaf pages in InnoDB table space file and show it is possible to recover records with
the table structure stored in table definition files. In 2014 they [7] show again it is possible to
restore database manipulation statement from InnoDB redo log files with the table structure
stored in table definition files. In 2014 [8] they present a new approach for a forensic-aware
database management system using transaction and replication sources and provide a prototype
implementation in MySQL based on MySQL replication and InnoDB transaction log. Aleksandr
Kuzminsky writes a set of open-source tools named percona-data-recovery-tool-for-innodb-0.5 [9]
to recover InnoDB table records. It uses two ways to get the table structures. First, a perl script
uses SHOW FIELDS FROM statement after connected to MySQL server. The second way is to
recover table structure from InnoDB data dictionary. When the table is dropped, the first way
can’t recover the dropped tables’ structures but the second way can recover the dropped tables’
structures. Though the second way works, it gets few table structures of all the dropped tables.
Aleksandr Kuzminsky releases a new tool named undrop-for-innodb-0.0-34 [10] in 2014. It is
an improved version of percona-data-recovery-tool-for-innodb-0.5. It works better than percona-
data-recovery-tool-for-innodb-0.5. It can recover the table structures of all the dropped tables
from InnoDB data dictionary. InnoDB data dictonary doesn’t store all information you can find
in the table definition file. For example, InnoDB data dictionary doesn’t store DECIMAL type
as a binary string. It doesn’t store precision of a DECIMAL field. So that information will be
lost. The accuracy of the table structure is still the above two tools’ problem.

This paper shows it is possible to recover the deleted table definition files of the dropped tables
from the disk raw image. To the best of our knowledge, using file carving technology to recover
the table definition files has not been done. Based on the reconstructed table definition files,
More accurate table structure can be reconstructed.

3 InnoDB Tables

For an InnoDB table, the MySQL server keeps the information of table structure in .frm file
which is in the database data directory and also keeps all records in a single ibdata1 when
innodb file per table is off or in .ibd file when innodb file per table is on. When an InnoDB table



P. Sun et al. /Journal of Computational Information Systems 11: 15 (2015) 5415–5423 5417

is dropped, its .frm file and .ibd file are deleted but not physically. Below is the analysis of the
structure of the InnoDB database.

3.1 Table definition files

Table definition file stores the information of the table structure. The basic format of the table
definition file is shown as Table 1. File header contains general information. Padding bytes are
filled with zeros. The key definition block is about the information of the key. Header block
is about general information of the column and the remaining three blocks is about specific
information of columns. The column definition block is about the column name and ID. The
column structure block is about the column’s data type. The column name block contains user-
defined names of the columns.

3.2 Tablespace

Tablespace stores the records of the table. Tablespace file is ibdata1 or .ibd file. A single ibdata1
is also called system tablespace. InnoDB data dictionary in system tablespace stores metadata
about user tables. InnoDB data dictionary is composed of some sytem tables. SYS TABLES
provides the information of the table. SYS INDEXES provides the information of the index.
SYS COLUMNS provide the information of table columns. SYS FIELDS provide the informa-
tion about columns belonging to the index. Tablespace is composed of 16KB database pages.
Leaf pages’ format is shown as Table 2. A page has two header/trailer pairs. The inner pair,
“page header” and “page directory”, are mostly the concern of the inner status information of
pages, while the outer pair, “fil header” and “fil trailer”, are mostly the concern of the the outer
status information of pages when involved with other database pages. Sandwiched between the
headers and trailers, are the records and the free (unused) space. A page always begins with two
unchanging records called the infimum and the supremum. Then come the user records. Between
the user records (which grow downwards) and the page directory (which grows upwards) there is
space for new records. In leaf pages, record format is shown as Table 3. F stands for number of
fields in Table 3. The field start offsets is a list of numbers containing the information “where a
field starts”. The extra bytes is a fixed-size header. The field contents contains the actual data.

Table 1: Table definition file format

Offset
Blocks in the

.frm files

0x00 file header

padding

0x1000 key definition

Padding

0x2000 header block

column definitions

column structures

column names

Table 2: Leaf page format

Blocks

fil header

page header

infimum and

supremum records

user records

free space

page directory

fil trailer

Table 3: Record format

Name Size

field start offsets (F*1)or(F*2)bytes

extra bytes
6 bytes(5 bytes

if compact format)

field contents depends content



5418 P. Sun et al. /Journal of Computational Information Systems 11: 15 (2015) 5415–5423

4 The Proposed Method

This section demonstrates a complete process of reconstructing records on the basis of the carved
table definition files. First, it carves the table structures. Second, it recovers the table records.

4.1 Carving table structure

In this step, it first acquires the disk image. DD command is used to get the image under Linux
operating system and under Windows operating system a tool Winhex is used to get the disk
image. Then it carves the table definition files from the disk image. File carving is a forensics
technique that recovers files based merely on file structure and content without any matching
file system meta-data. Header-footer carving is a basic and classical carving technique [11]. The
table definition files have distinctive header to find the start of the table definition file, but they
don’t have distinctive footer as end of the file. So the size of the definition file must be calculated.
Supposing the number of columns is k, ti is the length of the column name, and n is the file offset
of the start of the columns. First the length of the column names a can be calculated through
Eq. (1).

a =
k∑

i=1

ti (1)

Then, the general size of the whole continuous file b can be calculated through Eq. (2).

b = n+ 2 ∗ a+ 3 ∗ k + 17 ∗ k + 2 (2)

According to Eqs. (1)∼(2), a simplified algorithm of recovering .frm files is shown below as
Algorithm 1.

The purpose of line 1∼4 is to search the file header of all the .frm files; and the line 5∼8 is
to determine the file offset of the start of the columns; the line 9∼18 is to caculate the size of
the .frm files; If the .frm file has comment part, the enum column or the set column, then the
line 19∼21 is to add the length of the comments, the enum values and the set values to the final
size of the .frm files; and the line 23 is to create the .frm file to be analyzed in the process of
generating table structures.

Lastly, generates the table structures from the reconstructed table definition files. First find
the key block in table definition file. Each key of an InnoDB table has a key entry. Find and
analyze the primary key’s corresponding key entry in order to get the columns which compose of
the primary key. In table definition file, a column corresponds to a column definition block and a
block column structure. Analysis of these two blocks is to get the column ’s name and data type
[12]. Like that way, The information of all the columns is gotten. To restore the records, then
the resulting table structure is enough.

4.2 Recovering records

In this step, it first extracts all the leaf pages from the disk image or ibdata1 and groups them
by the same index. Leaf pages are identified by infimum and supremm records. The default
size of database pages is 16KB. Find leaf pages’ index id from page header, write leaf pages as
files on disk and classify them by the same index. Second, matches the table structure to the



P. Sun et al. /Journal of Computational Information Systems 11: 15 (2015) 5415–5423 5419

Algorithm 1 Recovering .frm files
Input: the image file of a disk partition D with size of S bytes
Output: the set of .frm files F
1: Set the number of the image’s clusters ClustersNum = S/4096
2: for i = 1; i < ClustersNum; i = i+ 8 do
3: Locate at the file offset 4096*(i-1) bytes
4: Read 32768 bytes into the buffer array Buffer[32768]
5: for each (consecutive eight bytes ∈ Buffer[42768] do
6: if consecutive eight bytes = 0xFE 01 09 0C 03 00 00 10 or 0xFE 01 0A 0C 03 00 00 10 then
7: Read one byte into m at the file offset as sum of the current file offset and 8448 bytes
8: if m = 0x00 then
9: n← 0x3100
10: else
11: n← 0x2100
12: end if
13: for each column ∈ this.frmfile do
14: Read column definition block into ColD[]
15: end for
16: Calculate the length of the column names a with Eq. (1)
17: for each column ∈ this.frmfile do
18: Read column structure block ColS[]
19: Get the length of the comment p
20: if the data type of the culumn is enum then
21: Get the length of the enum values l
22: end if
23: if the data type of the culumn is set then
24: Get the length of the set values q
25: end if
26: end for
27: Calculate this .frm files size with Eq. (2)
28: if m = 0x02 then
29: b← b+ 48 + p+ l + q
30: else
31: b← b+ p+ l + q
32: end if
33: Create this .frm file
34: end if
35: end for
36: end for

corresponding primary index. InnoDB data dictionary stores correspondence between table and
index. Find the same column in SYS COLUMNS with the carved table structure and get the
table id. Find the same table id from SYS INDEXES and get the primary index id from the
index name “primary”. This can be explained well by the following SQL statements.

SELECT TABLE ID FROM SYS COLUMNS WHERE ‘NAME’ = ‘column name’

SELECT ID FROM SYS INDEXES WHERE TABLE ID=‘table id’ and NAME=‘primary’

Finally, all of records are recovered by applying the table structure on the matched leaf pages.
For redundant records, its size can be gotten from the field start offsets. For compact records, its
fixed-length field’s size can be derived from the carved table structure and its varied-length fields
size can be derived from the field start offsets. After the records are extracted from the leaf pages
of the primary index, the records are interpreted into human-readable information according the
carved table structure.



5420 P. Sun et al. /Journal of Computational Information Systems 11: 15 (2015) 5415–5423

5 Evaluation Experiments

This section evaluates the effectiveness of the proposed method outlined in Section 4. The recov-
ery depends on whether InnoDB kept all records in a single ibdata1 or each table had its own
tablespace. Therefore, the experiment is consisted of two parts.

The two criterions to evaluate the proposed method are the precision rate and recall rate
(defined as Eqs. (3) and (4)), and the F-value is used to evaluate the quality of recovery method
(defined as (5)). The recovered table means recovering all of the records of the table. In these
equations, the A means the number of recovered tables which belong to the dataset; the B
means the number of recovered tables which do not belong to the dataset; and the C means the
number of tables which belong to the dataset but do not be recovered from the disk image. The
proposed method is compared with Percona InnoDB Recovery Tool Release 0.5 using InnoDB
data dictionary and undrop-for-innodb-0.0-34.

presion =
A

A+B
(3)

recall =
A

A+ C
(4)

F − value =
2 ∗ presion ∗ recall
presion+ recall

(5)

5.1 Scenario one

Mysql 5.1.32 is installed from source in under ubuntu operating system. The innodb file per table
option is off. The default character set is latin1. Sample InnoDB databases tpcc are installed.
The tpcc database is used to simulate TPC-C test. Then seven of nine tables are randomly
dropped, creating sample data loss. The 18GB raw image and ibdata1 are recovery prerequisites.
Following the process of the proposed method, the concrete experimental result is shown as Table
4. In database/table column of the Table 4, means the table has been dropped. In table structure
column of the Table 4, 1 means the table’s table structure is gotten and 0 means the table’s table
structure is not gotten. In table reords column of the Table 4, 0 means the table’s table records
is not gotten or incorrect and other numbers mean the table’s table records are gotten correctly.
The precision rate, recall rate and the F-value of comparing result is shown as Fig. 1.

Fig. 1: Comparison result in scenario one Fig. 2: Comparison result in scenario two



P. Sun et al. /Journal of Computational Information Systems 11: 15 (2015) 5415–5423 5421

Table 4: Experimental result of scenario one

Database/table

Percona Innodb Recovery

Tool release 0.5

Undrop-for-innodb

-0.0-34
Proposed method

table

structure

table

records

table

structure

table

records

table

structure

table

records

tpcc/customer* 0 0 1 0 1 30000

tpcc/district* 1 0 1 0 1 10

tpcc/history* 0 0 1 0 1 30000

tpcc/item 1 0 1 0 1 100000

tpcc/new orders* 0 0 1 0 1 9000

tpcc/order line* 0 0 1 0 1 299984

tpcc/orders* 0 0 1 30000 1 30000

tpcc/stock* 0 0 1 0 0 0

tpcc/warehouse 1 0 1 0 1 1

5.2 Scenario two

MySQL 5.5.34 is installed under ubuntu operating system. Sample InnoDB databases sakila
are installed. The sakila sample database is designed to represent a DVD rental store. It was
developed by Mike Hillyer, a former member of the MySQL AB documentation team. The in-
nnodb file per table option is on. The default character set is utf-8. Then ten of fifteen tables are
randomly dropped. The process of the proposed method is performed. The 20GB raw image and
ibdata1 are recovery prerequisites. Following the process of the proposed method, the concrete
experimental result is shown as Table 5. The explanation way of Table 5 is the same with Table
4. The precision rate, recall rate and the F-value of comparing result is shown as Fig. 2.

It can be seen that the proposed method gets highest scores of precision, recall and F-value
from Fig. 1 and Fig. 2. In experiment result of scenario one shown as Table 4, Percona InnoDB
Recovery Tool Release 0.5 gets one dropped table’s structure and gets all undropped tables’
structure. But it doesn’t recover even one table. In experiment result of scenario two shown as
Table 5, Percona InnoDB Recovery Tool Release 0.5 gets none of dropped table’s structure and
recovers all the undropped tables. In experiment results of scenario one and two shown as Table
4 and Table 5, although undrop-for-innodb-0.0-34 got all the tables’ structure, it only recover one
table’s records correctly in scenario one and eleven tables in scenario two. For tables which has
table structure but has not table records in two above methods, these tables’s structures have
decimal data type or datetime type. The precision of the decimal data type can’t be derived from
data dictionary. These tables’s structures are not accurate. In experiment result of scenario one
shown as Table 4, the proposed method doesn’t get the store table’s structure. In experiment
result of scenario two shown as Table 5, the proposed method gets all the tables’s structures and
recovers all the tables correctly.

6 Conclusion

In this paper, a new recovery method for InnoDB table records based on the reconstructed table
definition files is proposed. It uses file carving method to get table definition files from a raw



5422 P. Sun et al. /Journal of Computational Information Systems 11: 15 (2015) 5415–5423

Table 5: Experimental result of scenario two

Database/table

Percona Innodb Recovery

Tool release 0.5

Undrop-for-innodb

-0.0-34
Proposed method

table

structure

table

records

table

structure

table

records

table

structure

table

records

sakila/store 1 2 1 2 1 2

sakila/staff 1 2 1 2 1 2

sakila/rental* 0 0 1 0 1 16044

sakila/payment* 0 0 1 0 1 16049

sakila/language* 0 0 1 6 1 6

sakila/inventory* 0 0 1 4581 1 4581

sakila/film category* 0 0 1 1000 1 1000

sakila/film actor* 0 0 1 5462 1 5462

sakila/film * 0 0 1 0 1 1000

sakila/customer* 0 0 1 0 1 599

sakila/country 1 109 1 109 1 109

sakila/city 1 600 1 600 1 600

sakila/category * 0 0 1 16 1 16

sakila/address 1 603 1 603 1 603

sakila/actor * 0 0 1 200 1 200

image. Then it analyzes those table definition files to get table structures. Finally it matches the
table structures to the right primary index of the leaf pages to get valid records. The experimental
results show the proposed method is effective. In the future, we plan on getting the table structure
from redo log files because redo log encodes requests to change InnoDB database.

Acknowledgement

This work is supported by the Natural Science Foundation of China under Grant No. 61070212
and 61003195, the State Key Program of Zhejiang Province Natural Science Foundation of China
under Grant No. LZ15F020003.

References

[1] Fruhwirt P, Huber M, Mulazzani M, et al. Innodb database forensics. Advanced Information-
Networking and Applications (AINA), 2010 24th IEEE International Conference on. IEEE, 2010:
1028-1036.

[2] Pavlou K E, Snodgrass R T. Forensic analysis of database tampering. ACM Transactions on
Database Systems (TODS), 2008, 33(4): 30.

[3] Stahlberg P, Miklau G, Levine B N. Threats to privacy in the forensic analysis of database systems.
Proceedings of the 2007 ACM SIGMOD international conference on Management of data. ACM,
2007: 91-102.



P. Sun et al. /Journal of Computational Information Systems 11: 15 (2015) 5415–5423 5423

[4] Olivier M S. On metadata context in Database Forensics. digital investigation, 2009, 5(3): 115-123.

[5] Peter K. MySQL Internals Manual. 2011.

[6] Frühwirt P, Kieseberg P, Schrittwieser S, et al. InnoDB database forensics: Enhanced reconstruc-
tion of data manipulation queries from redo logs. Information Security Technical Report, 2013.

[7] Deep Dive into InnoDB Internals. http://forums.mysql.com/read.php?22,577068,577068#msg-577-
068.

[8] Frühwirt P, Kieseberg P, Krombholz K, et al. Towards a forensic-aware database solution: Using
a secured database replication protocol and transaction management for digital investigations.
Digital Investigation, 2014, 11(4): 336-348.

[9] Percona InnoDB Recovery Tool Release 0.5. https://launchpad.net/percona-data-recovery-tool-
for-innodb.

[10] undrop-for-innodb-0.0-34. https://launchpad.net/undrop-for-innodb.

[11] Garfinkel S L. Carving contiguous and fragmented files with fast object validation. digital inves-
tigation, 2007, 4: 2-12.

[12] Axmark D, Widenius M. MySQL Reference Manual. O’Reilly, 2002.


