Detecting Malware Variants via Function-call Graph Similarity

Shanhu Shang Ning Zheng

Jian Xu

Ming Xu Haiping Zhang

Institute of Computer Science, Hangzhou Dianzi University, P.R. China
shanhu.shang@gmail.com {nzheng, jian.xu, mxu, zhanghp}@hdu.edu.cn

Abstract

Currently, signature-based malware scanning is
still the dominant approach to identify malware
samples in the wild due to its low false positive rate.
However, this approach concentrates on programs’
specific instructions, and lacks insight into high level
semantics; it is enduring challenges from advanced
code obfuscation techniques such as polymorphism
and metamorphism. To overcome this shortcoming,
this paper extracts a program’s function-call graph as
its signature. The paper presents a method to compute
similarity between two binaries on basis of their
function-call graph similarity. The proposed method
relies on static analysis of a program, it first
disassembles the program into assemble code, and
then it uses a novel algorithm to construct the
Sfunction-call graph from the assembly instructions.
After that, it proposes a simple but effective graph
matching method to compute similarity between two
binaries. A prototype is implemented and evaluated
on several well-known malware families and benign
programs.

1. Introduction

Malware, short for malicious software, is software
designed to infiltrate a computer system without the
owner’s informed consent. In the last few years,
driven by profit, the spread of malware skyrockets year
by year, furthermore, code reuse and online malware
construction kits worsen the situation. Statistics from
PandalLabs 2009 annual report [1] confirmed this fact,
the total number of individual malware samples in
Panda’s database reached 40 million in 2009, and its
research laboratory received about 55,000 daily
samples. In consequence, total losses attributed to
malicious programs are estimated at billions of dollars
each year. Therefore, effective countermeasures must
be taken to mitigate the damages caused by malware.

978-1-4244-9356-2/10/$26.00 (©2010 IEEE

113

For a long time, antivirus products that adopt
signature matching approach perform well when
facing known viruses. However, there are many
shortages tied to this approach. Firstly, the
identification of a malware signature is both labor-
consuming and time-consuming despite automatic
signature extraction methods have been proposed [2].
Secondly, this syntactic-based detection method can be
easily bypassed by simple code obfuscation [3] because
it ignores program’s functionality. As a result, these
shortcomings are exploited by malware authors, and
more powerful viruses like polymorphic, metamorphic
viruses [4] [5] are developed to challenge traditional
antivirus tools. In this recent virus-antivirus battle,
code emulation combining signature scanning method
is used to detect the polymorphic malware by antivirus
vendors. This method is effective to most polymorphic
viruses, except some cunning ones which own self-
protection capabilities like anti-debug, anti-emulation.
Unfortunately, a metamorphic virus is much more
difficult to defeat, since it can rewrite its own code
with each infection, while keeping the original
functionality.

To overcome the shortages of traditional malware
signature, this paper treats the function-call graph as a
binary’s signature. The function-call graph of a binary
is a directed graph consisting of a set of vertices and a
set of directed edges. Given a program, each vertex in
its function-call graph corresponds to a unique
subroutine in the program’s source code, and each
edge depicts the caller-callee relationship between two
functions. Function-call graph is chose as malware
signature because it represents the functionality and
objective of a program semantically. No matter what
obfuscating transformations are performed on the
program, its functionality should be kept the same.
Therefore, function-call graph is more resilient to code
obfuscation techniques than signature strings.

The main contributions of this paper are as follows:
® We present a novel approach to construct a binary’s

function-call graph from its assembly code.

® We put forward an algorithm to compute similarity
between two binaries on basis of their function-call
graphs’ similarity.

® We implement a prototype system and apply it to
several malware families and benign benchmark
programs.

The rest of this paper is organized as follows.
Section 2 briefly reviews related work. Section 3
describes the proposed method specifically. Section 4
presents our prototype, and results on applying it to
several malware and benign utilities. Section 5 points
out the limitations of current work and future work
focus. Section 6 concludes the paper.

2. Related Works

As described in last section, code obfuscation
techniques, especially polymorphism and meta-
morphism, posed enormous threat to antivirus
detectors. To reverse the tide, many avenues have been
proposed by antivirus researchers and vendors.

Christodorescu and Jha [6] firstly used the static
analysis method to tackle malware code obfuscation;
they utilized the program’s CFG (control flow graph)
to defeat simple code obfuscations, and a static
analyzer for executables (SAFE) was also
implemented. The same authors [7] later described a
formal approach to metamorphic virus detection using
a template-matching method; a template consists of a
set of instruction sequences, which represents certain
malicious behavior.

Another ideology to counteract the effects of self-
mutation malware is to normalize the mutations to
their canonical form. Walenstein et al. [8] presented
an approach to construct a normalizer for a particular
class of mutating malware by leveraging term
rewriting theory. A similar idea had also been put
forward by Bruschi et al. [9] by utilizing compiler
techniques.

Programs’ structural information, like CFG,
function-call graph, was mined to detect malware
variants too. Paper [10] proposed a method that
reduces the problem of detecting malware inside an
executable to a sub-graph isomorphic problem. Paper
[11] presented an approach for recognizing
metamorphic malware based on the pattern of library
or system functions that were called. Function-call
graph was used to aid the malware analysis in [12],
and the method was proved to be helpful in finding
similarities and differences among various malware
variants and strains. Paper [13] presented an
automatic technique to derive malware specification

by monitoring the system calls that malware invoked.
Paper [14] designed, implemented, and evaluated a
malware database management system to process huge
malware samples based on malware’s function-call
graphs, many techniques were adopted to speed up the
graph similarity calculation process and indexing
speed.

Our method assimilates many good ideas from
papers listed above especially [12] and [14], and it
makes great improvements. Previous papers that used
CFG, function-call graph as malware signature often
lead to expensive time and space expenditure, because
these graph matching methods, such as graph edit
distance, are too time-consuming (bipartite matching
in time O(#n’) by using of Hungarian algorithm) and
space-consuming. Our method adopts a different way
to compute the graph similarity on basis of graphs’
common vertices. Various techniques are employed to
accelerate the graph matching process.

3. The Proposed Method

In this section we will present a method to extract
the function-call graph from an executable and an
algorithm to compute the graph similarity. At a high
level, the idea works mainly in three steps:

1) Disassemble the binary;

2) Construct a function-call graph from the assembly
code;

3) Compare the similarity between two programs via
calculating their function-call graphs’ similarity.
Given a binary program, firstly, we use PEiD [15]

to check whether it is packed and what kind of
packing tool is exploited, if this is identified, several
unpackers are used to unpack the file accordingly, e.g.
UPX [16] and like. Secondly, we utilize the well-
known interactive disassembler IDA Pro [17] to
disassemble the sample, and the output of this process
are assembly code of the binary and a set of identified
functions. Thirdly, we traverse the assembly code to
construct a function-call graph. Finally, on basis of the
function-call graph, we propose a graph similarity
metric to measure how similar two binaries are.

3.1. Function-Call Graph Definition

The function-call graph of a binary is a directed
graph, which consists of a set of vertices and a set of
directed edges, Figure 1 shows part of the function-
call graph from Email-Worm.Win32.Mydoom.g. In
this paper, for the convenience of computing similarity

114 2010 5th International Conference on Malicious and Unwanted Software

between two graphs, we also add a labeling function u

to label the vertices and a weighting function @ to
calculate the edges’ weights and the vertices’ degrees.
A formal definition of a program’s function-call graph
is given by Definition 1.
Definition 1. A function-call graph is a 4-tuple
G=(V,E,u,@), where

V is a set of finite vertices. Each vertex
corresponding to a unique function in a program, so a
vertex or a function represents the same thing in this
paper later. A vertex contains several attributes, and
Figure 2 depicts a vertex and its main attributes.

EcVxV is a set of directed edges. Vu,vel,
d<u,v>e E.<u,v> stands for there exists a directed
edge from vertex u to vertex v, it also implies that
function # contains a function call to function v, and
vice versa.

1 is a labeling function to label the vertices,
VveV,3u(v)e Lv, where Lv denotes a set of vertex
attributes.

@ is a weighting function to compute the edges’
weights and the vertices’ indegrees and outdegrees.
Vee E,dm(e)e N;Vu,veV,<u,v>e E,Jo(u)e N ,

@(v) e N, N is the set of positive integers.

I ' ocal-Subroutine
B oLL Function

[statically-Linked Funciton

sub_4A7C98

sub_4A63A4

memset

Figure 1. Part of function-call graph from
Email-Worm.Win32.Mydoom.g
More specifically, u is used to label the functions

of a program into an attribute set Lv. Each label in
Lv is comprised of five elements: function name,
function type, a pointer points to the function’s first
callee, a pointer points to the function’s first caller and
the function’s opcode sequence.

Functions are classified into three categories:
Dynamically-Imported functions, Statically-Linked
library functions and the Local-Subroutines.
Dynamically-Imported functions are DLL functions
that are linked at load time or run time of a binary,
only the function names are imported into the IAT
(Import Address Table) [18] of the target application,
for instance, “LoadLibrary”, “GetProcAddress” from
Kernel32.dll; Statically-Linked library functions are

resolved in a caller at compile-time, and the function
bodies are copied into a target application by the
linker to produce a stand-alone executable, e.g.,
“memset” from the C library; Local-Subroutines are
functions coded elaborately by the malware authors to
implement specific feature, e.g., functions that are
designed to relocate the virus code or to get address of

a certain API.

sub_401B1A proc near

push ebp

mov ebp, esp

add esp, OFFFFFFFCh

push offset aSoftwareDateti

push 80000001h

call RegDeleteKeyA

lea eax, [ebp+hKey]

push eax Function Indegree: 3.

push offset SubKey Function Outdegree: 5.

push 80000001h —> Function's Callees: RegDelegeKeyA,RegCreateKeyA,

call RegCreateKeyA RegCloseKey ExitProcess.

push offset ValueName Function's Callers: sub_4024AB,sub_401EEQ, start.

Opcode Sequence: push mov add push push call lea
push push call.

Function Attributes
Function Name: sub_401B1A.
Function Type: Local-Subroutine.

push [ebp+hKey]

call RegDeleteValueA
push [ebp+hKey]

call RegCloseKey
push 0

call ExitProcess
sub_401B1A endp

Figure 2. A function from Worm.Win32.Bagle.i

@ is used to count a vertex’s indegree, outdegree
and a directed edge’s weight. The function’s outdegree
denotes how many functions it calls and its indegree
represents how many times it is called by others. A
function may call or be called by many functions, it is
also possible that one function is called more than
once by the same caller, so the edge’s weight
represents how many times a callee is invoked by the
same caller in the program. If a function’s indegree is
greater than zero, the function maintains a list
consisting of incoming edges; similarly, if its
outdegree is greater than zero, it also has a list
consisting of outgoing edges.

To facilitate describing the proposed algorithm
more clearly, we give some relevant definitions.

Definition 2. The callee set of vertex u# of graph
G=WV,E,u,@)is a vertex set Callees(u)={v|<u,v>cE}

it represents all the functions called directly by« , and
u.outdegree =| Callees(u) | .

Definition 3. The caller set of vertex u of
graph G = (V,E, u,@) is a vertex set Callers(u)={v|
<v,u>eFE} , it represents all the functions that
invoke u directly, and u.indegree =| Callers(u) | .

Definition 4. The neighbors of vertex u# of graph
G=,E,u,w)is a vertex set Neibors(u) = Callees(u)
UCallers(u) , so| Neibors(u) |= uindegree +u.outdegree .

3.2. Function-Call Graph Extraction

2010 5th International Conference on Malicious and Unwanted Software 115

We now describe in detail how to build the
function-call graph from a binary. The input to the
algorithm is a program’s assembly code and the output
is a function-call graph, pseudo-code is given in
Algorithm 1.

Algorithm 1
Input: An assembly file M.
Output: Function-call graph G,,.
Begin
[*Init the graph Gy, Funset, FunQueue.*/
1 Gy V=0 ; GyuE=;
2 EntryFunSet= ; FunSet=C ;
3 FunQueue = ; HeadVexSet = ;
I* Extract functions from assembly code.*/
4 FunSet «— ExtractFun(M);
5 EntryFunSet < ExtractEntryFun(M);
6 FunQueue « InitFunQueue(EntryFunSet);
/*Build the caller-callee relationship.*/
7 while(d = FunQueue)
tailVertex = DeQueue(FunQueue);
InsertVertex(G); p(tailVertex));
tailVertex.enQueFlag = true;
/*Extract tailVertex's callee set.*/
11 HeadVexSet{h,...,h }—Callees(tailVertex);
12 foreach i=1 to n do
if(D = (h; N FunSet))// hi is not in FunSet.
continue;
endif
16 headVertex =h;;
e =<u(tailVertex), py(headVertex) >;
18 if(e € Gy .E)
@(ett);
@(tailVertex.outdegree++);
@(headVertex.indegreet++);
22 else
InsertVertex(G,,, p(headVertex));
InsertEdge(Gy,, €);
25 endif
26 if(false = headVertex.enQueFlag)
EnQueue(FunQueue, headVertex);
headVertex.enQueFlag = true;
29 endif
30 endwhile
31 return Gy;;
End

[ee]

Once a binary is disassembled successfully by IDA
Pro, the assembly code is obtained, and simultaneously
the functions’ boundaries are identified. IDA Pro
names each identified function with a symbolic name.
For Dynamically-Imported functions, the function
names can be gained from the IAT in the binary’s PE
header [18]. For Statically-linked library functions,
their names can be recognized by IDA Pro’s FLIRT
(Fast Library Identification and Recognition
Technology) [19]. Nevertheless, the Local-
Subroutines’ names are unavailable if the symbol table
of the binary has been stripped off by the malware
author. Therefore, this kind of functions is named with

the same prefix “sub_”, followed with the function’s
memory address.

The algorithm adopts a breadth-first approach to
build the function-call graph by use of a FIFO function
queue, and the function-call graph is stored into an
orthogonal list. The algorithm builds the caller-callee
relationship starting from the entry point functions. It
traverses each function’s instruction sequences to find
all the subroutines called by the function, when all the
functions are processed, the algorithm ends and the
function-call graph is constructed.

First of all, the algorithm traverses the assembly
code to recognize every function’s boundary and save
the functions into a function set called “FunSet”. At
the same time it extracts all the entry point functions
and stores them into the “EntryFunSet”. Then the
function queue is initialized with the entry point
functions. While the queue is not empty, the algorithm
dequeues the head element (“tailVertex” in line 8) of
the queue, and treats it as a function caller. Afterwards
the labeled “tailVertex” is inserted into the graph G ,
and its “enQueFlag” is set to be true in case the same
vertex enqueues the queue repeatedly later. After that,
the algorithm traverses the instruction sequence of the
“tailVertex” to extract its callee set, corresponding to
line 11 in Algorithm 1. For the present, we only cope
with the situation that function call instructions are
identified explicitly, such as “call IstrlenA”, “jmp
sub_403252”.

When the callees are acquired, the algorithm
traverses the callee set to check whether the graph
already has an edge from the “tailVertex” to the
“headVertex”, if so, the algorithm increase the caller’s
outdegree, the callee’s indegree and the edge’s weight
by one separately (line 18-21); otherwise, it inserts the
“headVertex” and the new edge into the graph. At last,
the algorithm checks whether the “headVertex” has
been enqueued, if not, the “enQueFlag” of the
“headVertex” will be marked as true and appended to
the tail of the queue. This caller-callee relationship
building process maps with line 7 to line 30. When the
while loop ends, the function-call graph is constructed
smoothly. The time complexity of this algorithm is
O(V|*|IE|]) and the space complexity is
O@* |V |+ |V [*|E).

3.3. Function-Call Graph Similarity

The past section depicted how to construct a
function-call graph from a binary, and in this section

116 2010 5th International Conference on Malicious and Unwanted Software

we will present an algorithm to measure the similarity
between two function-call graphs Gi1 and G- .

Semantically, the common functions shared by two
binaries signify that they are likely to accomplish the
same or similar tasks. Grounded on this assumption,
the algorithm tries to acquire the maximum common
vertices between Gi1and G2 . Once the joint vertices of
the two graphs are gained, the similarity score
between them can be represented by the proportion of
common vertices number to the maximum vertex
number. Although this is not a symmetric similarity
metric, it still can reveal to what extent two graphs
resemble each other.

It is worth noting that the algorithm does not
simply compare the vertices between two graphs, it
also takes the edges’ information into consideration
during the process of vertex mapping. Ahead of
illustrating the algorithm specifically, a formal
definition of maximum common vertex-pair set is
given by Definition 5 and the graph similarity metric
is given by Definition 6.

Definition 5. Let G=(V,E, @), G2=V2, E2, u,@)

be two function-call graphs, and Mcv(G1,G2) =
{w,v)|lueViNveV:NMu,v)>0} be
vertex-pair set. Actually, Mcv(G1,G2) consists of

matched

matched vertices generated by a vertex mapping
function M , and 0 denotes a low similarity threshold
between two vertices from Gi and G»

When Mcv(G1,G2) is obtained, the similarity value is

calculated by Definition 6.
Definition 6. The similarity metric between two
function-call graph Gi=(V,E, @) , Go=(V2, E2, u,@)
| Mcv(G1,G2) |

is defined as Sim(Gi,G2) =———— , where
Max(|V1],|V2])

Mcv(G1,G2) is the number of matched vertex-pairs,
and Max(|V1],| V2|) represents the maximum vertex
number of graph Giand G- . For any graphs Giand G-,
Sim(G1,G2) always yields a value in [0, 1], value 0
indicates a rather low degree of resemblance, and
value 1 shows they share almost the same vertices.

Let Uvi, Uv2 denote the vertices to-be-matched in
vertex set}1 and V2 respectively, pseudo-code for the
graph similarity computation is given in Algorithm 2.
The Algorithm is divided into five phases and the
vertex matching process takes up the former four.

In the first step, the algorithm begins matching the
vertices from the atomic functions [12]. In this paper,
the atomic functions refer to Dynamically-Imported
and Statically-Linked library functions that share the

same names across distinct executables. If two atomic
functions have the same name, they are regarded as a
match and saved into Mcv(G1,G2). When this process
is completed, if Mcv(G1,G2) is still empty, which
means the two programs have no common atomic
functions, the vertex mapping algorithm switches to
phase 4; Otherwise, it goes to step 2 to maximize the
vertex-pairs greedily.

In step 2, the algorithm searches unmatched
vertices in V1 and V2 to lookup if there are two vertices
fulfill the following condition: All the atomic
functions called by the two vertices are the same;
besides, the number of common atomic functions is
greater than 1. If two vertices satisfy the condition, the
algorithm treats them as a successful match and adds
the vertex-pair into Mcv(G1,G2) . This method is a

little similar to the “call-tree signatures” approach in
[12], but it takes more tolerance to code reordering.

The previous step introduces a vertex matching
method based on the trust from matched atomic
functions. In the third stage, the algorithm takes a
neighbor-biased approach to expand the matching
results. In a function-call graph, the neighbors of a
vertex v are functions that are called by v together with
those invoke v . If a majority of two vertices’ neighbors
have been matched, they are mostly possible to be the
same. On account of this, to two vertices not yet
matched, if the proportion of their matched neighbors
to their maximum neighbor number exceeds a user-
defined threshold o (the experiment results show that
0.7 is a suitable value for o), the algorithm takes the
two vertices as a match and stores them
into Mcv(G1,G2) .

During step 4, to further decrease the unmatched
vertices in V1 and V2, the algorithm exploits the
vertices” instruction-level information. Firstly it
extracts the effective opcodes (junk opcodes like “nop”
are removed) from instruction sequences and aligns
them into an opcode line (see Figure 2). The algorithm
then computes the similarity between the opcode
sequences of two vertices by use of the LCS (Longest
Common Subsequence) algorithm [20]. On condition
that the similarity score outnumbers a user-defined
threshold © (t = 0.75 is chosen empirically), two
vertices are considered as a match and kept
into Mcv(G1,G2) . This process repeats until no more

matches are yielded. Opcode sequence is chose to
calculate the similarity between vertices because it is
more resilient to code obfuscation than the whole
instruction sequence.

2010 5th International Conference on Malicious and Unwanted Software 117

Algorithm 2
Input: Function-call graph Gy, G;.
Output: Sim(G,, G,).
Begin
Uvy — Gy V1, Uvy — G, Vs
Step 1 /*Vertex matching based on atomic functions.*/
AtomicFunSetl — ExtractAtomicFun(G,.V));
AtomicFunSet2 «— ExtractAtomicFun(G, .V,);
Mcev(Gy, Gy) = {(u, v)| uE AtomicFunSetl N vE
AtomicFunSet2 N u.vexName == v.vexName};
Uvi =Gy .Vi- {u| u€ V1N (true == u.matchFlag)};
Uv, =Gy .V - {v| vE V; N (true == v.matchFlag)};
if(J =Mcev(Gy, G,))
goto Step 4;
endif
Step 2 /*Vertex matching based on atomic functions.*|
foreach ;€ Uv, do
foreach v;€ Uv, do
if(AtomicCallees(u;) = AtomicCallees(v))
Mcev(Gy, Gy) = Mev(Gy, Go) U (13, v);
Uvy =Uv; - u; Uvy =Ury - v
break;
endif
Step 3 /*Vertex matching based on matched neighbors.*/
foreach u; € Uv, do
foreach v; € Uv, do
NeiborPairs =| Neibors(u;) N Neibors(v) |;
if((NeiborPairs / max((|Neibors(u;)|, | Neibors(v)|)) > c)
Mev(Gy, G) = Mev(Gy, Gr) L (i ,v);
Uvy = Uvy - u; Uy, = Uy, -v;;3
break;
endif
Step 4 /* Vertex matching based on opcode sequences.*/
foreach u; € Uv; do
foreach v; € Uy, do
vexSim = LCS(u;.opcodeSeq, v;.opcodeSeq);
if(vexSim >17)
Mev(Gy, Gr) =Mev(Gr, Gy) U (i, v))5
Uv, = Uvy - u; Uv, =Uvy - vy
break;
endif
Step 5/*Graph similarity calculation.*/
Sim(Gy, Gy) = [Mev(Gy , G)| | Max(Vi , |Val);
return Sim(G, , G,);
End

At the end of the vertex matching process, we
obtain the matched vertex-pair set Mcv(G1,G2), so the
similarity score can be calculated by Definition 6 (step
5). The worst time complexity is O((| V1| *| V2 |)* (m*n)),
where m and n represent the average neighbor number
of each vertex in V1, V2 separately, this complexity is
resulted by some vertex pairs in the third phase of the
algorithm. However, not all of the vertices need to be
matched in such a way. In contrast, the best time
complexity is O(| V1|*|V2|) if the two graphs only
consist of atomic functions.

4. Experimental Evaluation

For the purpose of verifying the correctness and
efficacy of our ideas, we implement a prototype and

apply it to a set of known malware samples and benign
files. The evaluation can be divided into two parts. In
the first part, we try to evaluate the algorithms’ ability
to identify malware variants compared to [12]; in the
second part, we attempt to validate the algorithms’
capability to distinguish benign binaries and malicious
programs.

4.1. Variants Similarity Evaluation

The dataset used in the first experiment consists of
several malware families selected from VX Heavens
[21], including Email-Worm.Win32.Mimail, Email-
Worm.Win32.Klez, Virus.Win32.Sality, Virus.Win32.
Evol.

Email-Worm.Win32.Mimail

The Mimail family members are potent worms that
spread in the form of a file attachment sent by email.
The following similarity matrix show the similarity
scores between each pair of the malicious binaries in
percentage terms. The values 100.00 along the main
diagonal are similarity scores that the wvariants
compare with themselves. Data that lie above the main
diagonal are experimental results from [12] and below
are ours. Unfortunately, symbol ‘*’ represents the
similarity score is absent because the sample is
unavailable in VX heaven; while sign ‘-> means no

data is given in the contrast experiment.
Mimail.a Mimail.b Mimail.c Mimail. d Mimail. e Mimail.f Mimail.g

Mimail.a| 100.00 ~ 90.80 85.40 87.40 75.00 75.00 -
Mimail.b * 100.00 84.70 88.00 74.30 74. 30 -
Mimail.c| 95.14 * 100.00 81.50 81.30 81.30 -
Mimail.d * * * 100.00 72.30 72.30 -
Mimail.e| 86.86 * 86. 11 * 100. 00 95. 40 -
Mimail.f| 86.86 * 86. 11 * 100.00 100. 00 -
Mimail.g| 86.86 * 86. 11 * 100.00 100.00 100. 00
lmi]. h Mimail. i Mimail. j Mimail. k Mimail.] Mimail.m Mimail.q
Mimail. 100. 00 81.70 83. 20 - 90. 90 88. 80 41. 60

h
Mimail.i| 92.74 100.00 95. 00 - 81.70 79. 90 46. 90
Mimail. j| 92.74 100.00 100.00 - 83. 20 81.30 47.80
Mimail. k] 100.00 92. 74 92.74 100.00 - - -
Mimail. 1] 97.58 92.74 92.74 97.58 100.00 90. 30 42. 40
Mimail.m| 97.58 94. 26 94. 26 97.58 97.58 100. 00 40. 60
Mimail. q| 27.42 28.81 28. 81 27.42 26. 61 27.05 100.00

The higher similarity scores demonstrate that our
method outperforms [12] except the results given by
Mimail.q. Compared with other variants, besides the
worm itself, Mimail.q still has a dropper, that’s why it
seems more different from others. Becides, we
researched the unpacking and vertex matching process,
and found out that function-call graph extracted from
Mimail.q has much less vertices than other variants,
this maybe attributes to incomplete unpacking.

Email-Worm.Win32.Klez

Compared to [12], the Email-Worm.Win32.Klez
family also gives better similarity results.

118 2010 5th International Conference on Malicious and Unwanted Software

Klez.a Klez.b Klez.c Klez.d Klez.e Klez.f Klez.g Klez.h Klez.i Klez. j
Klez.a| 100.00 79.60 70.30 70.30 49.30 - - - -
Klez.b| 95.98 100.00 73.40 73.40 49.30 - - - - -
Klez.c| 100.00 95.98 100.00 88.20 49.60 - - - - -
Klez.d| 86.9%4 91.04 86.94 100.00 49.60 - - - - -
Klez. e * * * * 100. 00

100.00 87.00 80.70 80.70 87.00

Klez. f| 61.47 63.91 61.47 67.28 *

Klez.g| 61.47 63.91 61.47 67.28 * 100.00 100.00 80.70 80.70 87.00
Klez.h| 6156 63.75 61.56 65.63 * 94.80 94.80 100.00 89.60 80.70
Klez.i| 61.56 63.75 61.56 65.63 * 94.80 94.80 100.00 100.00 80.70
Klez. j| 61.47 63.91 61.47 67.28 * 100.00 100.00 94.80 94.80 100.00

Because the worms listed above in the contrast
experiment were more than five years ago, in order to
validate our algorithms’ capability to detect up-to-date
viruses, Virus.Win32.Sality family is selected as a
typical case.

Virus.Win32.Sality

Virus.Win32.Sality is a family of polymorphic
viruses that target Windows executable files with
extensions .SCR or .EXE. From the second half of
2008 to the first half of 2009, Variants of the Sality
family have long been ranking the top 20 in the
Monthly-Malware-Statistics [22] published by
Kaspersky Security Network. Similarity scores
between mutations of the Sality family are listed below
in a percent form, and the matrix is symmetric. From
the matrix we can see, all the similarity scores are

greater than 0.4.
|Salit .a Sality.c Sality.d Sality.e Sality.f Sality.g

Sality.a| 100.00 99.67 96.01 62.79 40.86 87.04

Sality.c| 99.67 100.00 95.70 62.58 40.73 86.76

Sality.d| 96.01 95.70 100.00 64.51 41.98 88.40

Sality.e| 62.79 62.58 64.51 100.00 58.05 68.25

Sality.f| 40.86 40.73 41.98 58.05 100.00 43.80

Sality.g| 87.04 86.76 88.40 68.25 43.80 100.00
Virus.Win32.Evol

Virus.Win32.Evol family is studied to further
testify the resilience of the proposed algorithm to self-
mutating viruses. According to the malware
description from [5], “W32.Evol is the first W32 virus
using a 32-bit true metamorphic engine. It can
replicate on Windows 9x as well as Windows NT and
Windows 2000”. The similarity values among all the
three members Evol.a, Evol.b and Evol.c of the family
are 100%.

4.2. Hybrid Similarity Evaluation

It is also very important to measure the similarities
between malware and benign binaries, which disclose
whether our method can differentiate good from evil.
The data set used in this test consists of 11 legitimate
binaries and 11 malicious programs. The benign
binaries are collected from the system files and well-
known application software; the malicious programs
contain various variants from different virus families,
all of them are downloaded from VX heaven, the test
suite is listed in Table 1.

Table 1. The benign and malicious samples

Program Name

Description

ipvb.exe

Isass.exe

netstat.exe

cdm.dll

pid.dll

mdSsum.exe

putty0.60

Firefox3.6.3
install_icq7.exe
IE7-WinXP-x86-chs.exe
IE8-WinXP-x86-chs.exe
Trojan.Win32.AVKill.a
Trojan.Win32.1ICQPager.b
Worm.Win32.Bagle.i
Virus.Win32.Evol.a
Worm.Win32.Kido.ih
Worm.Win32.Kido.dam.x
Worm.Win32.Mimail.c
Virus.Win32.Sality.d
Virus.Win32.Sality.e
Virus.Win9x.ZMorph.5200
Virus.Win32.Zmist

system file from system32 folder, Win XP SP2.
system file from system32 folder, Win XP SP2.
system file from system32 folder, Win XP SP2.
system file from system32 folder, Win XP SP2.
system file from system32 folder, Win XP SP2.
md5 checksum [23].

a free telnet/SSH Client, version 0.60.

Firefox browser version 3.6.3.

a popular instant chatting program, version 7.
Internet Explorer 7 for XP SP2 users in China.
Internet Explorer 8 for XP SP2 users in China.
a hacker tool with subversive purposes.

a password capture.

a worm spreads via e-mail and file sharing.

a 32-bit metamorphic virus.

also known as Conficker.

a variant of the Kido family.

a potent worm spreads via email attachment .

a polymorphic virus.

a variant of the Sality family.

an early polymorphic virus.

a metamorphic malware written by Zombie.

Similarities between any two of these 22 binaries
are calculated by the proposed method, producing 231
similarity value pairs.

pictured in Figure
binaries

Experimental

similarity percentages among the samples.

Z-awis Similarity Percentage

10
19 .
22 20 y-Exis

results are
3, x-axis, y-axis indicate the 22

respectively and z-axis represents the

Figure 3. Similarities among hybrid binaries

As we can see from the graph, there are 3 vertical
lines whose similarity scores are much higher than the
others. Actually, they are generated by 3 program
pairs: IE7 and IE8 (similarity value 0.9091), Sality.d
and Sality.e (similarity value 0.6451), Kido.h and
Kido.dam.x (similarity value 1). Besides the 3 pairs,
for the great majority cases, the similarity scores are
below 0.25 except the score 0.2579 generated by ICQ7
and Zmist. We investigated the matched vertices of
the two binaries, and found that they shared 48 atomic
functions. This was why they produced a higher
similarity score than others.

5. Limitations and Future Work

2010 5th International Conference on Malicious and Unwanted Software 119

Although preliminary experimental results are very
inspiring, it still has many drawbacks to fully realize
malware automatic analysis.

As our method relies on the static analysis results,
so the main limitation comes from static analysis.
Many code obfuscation techniques, like code packing,
entry point obscuring, have been exploited to hinder or
invalidate the disassembly process. The experiment
process proved this fact as well; a few instances
downloaded from VX Heavens were packed and
difficult to unpack. Hence dynamic analysis is needed
to help disassemble the malware inerrably.

Implicit function-call is a severe threat to current
prototype too. A few malware invoke the atomic
functions implicitly, which may cause the current
method invalid, so that future work will focus on
resolving this shortage.

6. Conclusion

This paper presented a method to compute the
similarity between two binaries on basis of their
function-call graphs’ similarity.

To construct a binary’s function-call graph, this
paper introduced a novel approach by use of a FIFO
function queue, and the graph was stored into a well-
designed orthogonal list. Once the function-call graph
was extracted, the paper computed the similarity
between two graphs using an asymmetric similarity
metric. In the process of vertex matching, information
from multiple aspects was mined to maximize the
common vertex pairs.

In the end, the proposed method was prototyped
and evaluated by wild malware, system files and well-
known applications. Empirical results demonstrated
the efficacy and resilience of the proposed method in
identifying malware variants. Besides, the method
could also be used in other areas of malware analysis,
such as phylogeny construction.

Acknowledgement

This paper is supported by NSFC (No. 61070212,
No.61003195), Natural Science Foundation of
Zhejiang Province, China under Grant No. Y1090114.

References

[1] Annual Report PandaLabs 2009, http://www.pandase
curity.com/homeusers/security-info/tools/reports/.

[2] K. Griffin, S. Schneider, X. Hu and T.-c. Chiueh.
Automatic generation of string signatures for malware

detection. In Proceedings of RAID 2009, pages 101-120,
Brittany, France, Sep. 2009.

[3]1 M. Christodorescu and S. Jha. Testing malware detectors.
In Proceedings of the ACM SIGSOFT International
Symposium on Software Testing and Analysis 2004
(ISSTA’04), pages 3444, Boston, MA, USA, ACM Press,
July 2004.

[4] J. Marie, Borello and L. M¢. Code obfuscation
techniques for metamorphic viruses. Journal in Computer
Virology, Volume 4, pages 211-220, 2008.

[5] P. Szor. The art of computer virus research and defense.
Symantec Press, USA, first edition, 2005.

[6] M. Christodorescu and S. Jha. Static analysis of
executables to detect malicious patterns. In Proceedings of
the 12th conference on USENIX Security Symposium,
Volume 12, Washington, DC, 2003.

[71 M. Christodorescu, S. Jha, et al. Semantics-aware
malware detection. In IEEE Symposium on Security and
Privacy, May 2005.

[8] Walenstein, R. Mathur, et al. Constructing malware
normalizers using term rewriting. Journal in Computer
Virology, Volume 4, pages 307-322, 2008.

[91 D. Bruschi, L. Martignoni, M. Monga. Code
normalization for self-mutating Malware. Journal in IEEE
Security & Privacy, Volume 5, pages 46-54, 2007.

[10] D. Bruschi, L. Martignoni, M. Monga. Detecting self-
mutating malware using control-flow graph matching. In
Detection of Intrusions and Malware & Vulnerability
Assessment, Volume 4064, pages 129-143, Nov. 2006.

[11] Z. Qinghua and D. S. MetaAware: Identifying
metamorphic malware. In Proceedings of the 23th ACSAC
on Computer Security Applications Conference, pages 411-
420, Dec. 2007.

[12] E. Carrera and G. Erdelyi. Digital genome mapping -
Advanced binary malware analysis. In Proceedings of the
2004 Virus Bulletin Conference, 2004.

[13] M. Christodorescu, S. Jha and C. Kruegel. Mining
specifications of malicious behavior. In Proceedings of the
ACM SIGSOFT symposium on the foundations of software
engineering, pages 5-14, Dubrovnik, Croatia, 2007.

[14] X. Hu, T.-c. Chiueh and K. G. Shin. Large-scale
malware indexing using function-call graphs. In Proceedings
of CCS 2009, pages 611-620, Chicago, Illinois, USA.

[15] PeiD 0.95, http://www.peid.info/, 2010.

[16] UPX 3.05, http://upx.sourceforge.net/, 2010.

[17] IDA Pro 5.5, http://www.hex-rays.com/idapro/, 2010.
[18]Microsoft Portable Executable and Common Object File
Format Specification Revision 8.1. http://www.microsoft.
com/whdc/system/platform/firmware/PECOFF.mspx, 2010.
[19] Chris Eagle. The IDA Pro book, No Starch Press, first
edition, Aug. 2008.

[20] Thomas H. Cormen, Charles E. Leiserson, et al.
Introduction to algorithms. MIT Press, second edition, 2001.
[21] VX Heavens, http://vx.netlux.org/, 2010.

[22] Kaspersky Monthly Malware Statistics: May 2009,
http://www.kaspersky.com/news?id=207575832, 2010.

[23] md5 checksum, http://www.etree.org/mdScom.html,
2010.

120 2010 5th International Conference on Malicious and Unwanted Software

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

