
Malware Obfuscation Detection via Maximal
Patterns

Jian Li Ming Xu Ning Zheng Jian Xu
Institute of Computer Application Technology, Hangzhou Dianzi University, P. R. China

lijiandm@163.com mxu@hdu.edu.cn nzheng@hdu.edu.cn jian.xu@263.net

Abstract—Malware obfuscation is defined as a program
transformation. It is always used in malware to evade
detection from anti-malware software. In this paper, we
propose a method to detect malware obfuscation using
maximal patterns. Maximal pattern is a subsequence in
malware’s runtime system call sequence, which
frequently appears in program execution, and can be
used to describe the program specific behavior. The
maximal pattern sequence is extracted from the
malware’s runtime system calls, and the similarity
between two pattern sequences will be measured by
evolutionary similarity. Based on the real-world
malwares test data, the experiment results have shown
that our method can efficiently detect malware
obfuscation.

Keywords-malware； obfuscation； maximal pattern；
evolutionary similarity

I. INTRODUCTION
A malware is a program that has malicious intend. It

includes viruses, Trojans, worms, backdoors and so on.
Obfuscation is defined as program transformation,
which includes metamorphism and polymorphism. A
metamorphic malware obfuscates the entire program
using several transformations, such as Dead-code
Insertion, Register Reassignment, Instruction
Substitution and Code Transposition, while
polymorphic malware only uses these transformations
to obfuscate its decryption loops [1]. They are used by
malware authors for a long time. And anti-malware
software which uses simple signature matching
approaches is vulnerable to them. In order to improve
the resilience of anti-malware software, it is necessary
to detect the obfuscation in malwares.

Besides, due to the voluntary sharing of ideas and
code in malware production community, there are a
small numbers of authors who produce completely new
malicious programs. Rather, most of different malicious
programs are modifications of some previous one [3].
In a given malware family, malware always evolves
with a bit change by borrowing or copying code from
previous edition. So measuring the similarity between
unknown mal-sample and existing malware can

improve the efficiency and effectiveness of malware
analysis. And it is expected to help reconstructing
malware phylogenies by using similarity techniques.

In this paper, we use maximal patterns to detect the
obfuscation. A maximal pattern represents a specific
subsequence in malware’s runtime system calls
sequence. It has the ability to describe the program
specific behavior, and can be used to detect obfuscation
accurately. We extract maximal pattern sequence from
the sequence of system calls, and measure the similarity
between two maximal pattern sequences by
evolutionary similarity. Our experiments have shown
that our method can detect the real-world malware
obfuscation with high accuracy and strong resilience.

II. RELATE WORK
Obfuscations have been used for a long time to

evade detection of malware. In [6], authors discussed
some obfuscation technologies from the view of
malware detection. Some static analysis approaches
have been proposed for obfuscation detection. For
instance, semantics templates were created in [1] to
detect malicious traits, these templates were created
based on instruction, variable and symbolic constants.
Authors in [7] used software transformations to
improve malware detection. In [2], authors present an
architecture for detecting malicious patterns in
executables that is resilient to common obfuscation. [8]
detected obfuscation based on the hypothesis that all
versions of the same malware share a common core
signature which is a combination of several features of
the code. While, some limits of static analysis for the
detection of malicious code are explored in [9]. In this
paper, we use dynamic information to detect malware
obfuscation.

Besides, Obfuscation techniques are not only
relevant to detecting morphed code but also several
other issues. [11] present the relationship between
obfuscation technology and protection of intellectual
property rights present in proprietary software. [3]
provide a brief introduction to the issue of measuring
similarity between malicious programs, and how

2009 Third International Symposium on Intelligent Information Technology Application

978-0-7695-3859-4/09 $26.00 © 2009 IEEE

DOI 10.1109/IITA.2009.109

325

2009 Third International Symposium on Intelligent Information Technology Application

978-0-7695-3859-4/09 $26.00 © 2009 IEEE

DOI 10.1109/IITA.2009.109

324

software evolution history refactoring is known to occur
in the area.

Some relevant works to us have been done in the
area of intrusion detection and bioinformatics. In [13],
authors discover variable-length combinatorial pattern
in biological sequences. In [10], authors used variable-
length patterns to construct intrusion detection system.
And [5] used system calls to detect sophisticated
mimicry attacks in intrusion detection system.

III. MALWARE OBFUSCATION MEASURING
Maximal pattern is a subsequence in malware’s

runtime system call sequence, which can describe
program specific behavior suitably. We firstly extract
maximal pattern sequence from the runtime sequence of
system calls, and measure the similarity between two
maximal pattern sequences by evolutionary similarity.
We use this similarity to detect obfuscation. Experiment
results show that our method can efficiently detect the
malware obfuscation.

A. Describe malware behavior using dynamic
information
Runtime sequence of system calls is used to detect

obfuscation. Using dynamic information of malware
process can bypass the obstacle caused by encryption
and pack technology, since program will decrypt and
unpack itself when it executes in operating system. As
the way for a program to interact with the operating
system, system calls represent important events
occurred when process executes. Besides, since system
calls have higher system abstractness than instructions,
some obfuscation transformations based on instruction
level, which includes dead-code insertion, register
reassignment and instruction substitution, have litter
effect on malware’s runtime behavior. So system calls
are more resilient to code obfuscation technologies.

The number of the system calls is fixed for a special
operating system version. For instance, Windows XP
SP2 has 284 system calls named begin with “Nt”. The
system call number covers from 0 to 283. We trace the
system calls at runtime. Figure 1 shows two sequences
of system calls,

1S denotes a part of system call
sequence of Backdoor.Win32. AcidShiver.a, and

2S
denotes a part of Backdoor.Win32.AcidShiver.f:

1 78,137,78,137,130,124,156,25,119,125,108,25,137,78S =
2 130,124,156,25,119,271,188,271,188,125,108,25,137,78S =

In our experiments, we use Ether [12] as our system

call tracer. Ether traces system calls via hardware
virtualization. It remains transparent to target process
and can keep a high tracing accuracy.

B. Extracting maximal pattern sequence from system
call
We define a pattern represents a subsequence in

malware’s runtime system calls sequence. It frequently
appears in program execution, and thus might
correspond to specific task on operating system or to a
basic block in program’s source code [5]. A pattern a
in system calls sequence S is a maximal pattern only if
there is no pattern b for which holds that b contains
a and the number of occurrences of b is equal to or
lager than the number of occurrences of a .

System call sequence can be divided into a sequence
of maximal patterns. For instance,

1M is the maximal
pattern sequence divided from

1S , and
2M is the

maximal pattern sequence divided from
2S :

1

78,137,78,137

130,124,156,25,119

125,108,25,137,78

M =

2

130,124,156,25,119

271,188,271,188

125,108,25,137,78

M =

We suppose M is the maximal pattern sequence

divided from system call sequence S .We extract the
maximal pattern sequence from system call sequence
using algorithm 1:

Algorithm 1: Extract maximal pattern sequence from
system call sequence.
Input: S : sequence of system calls

 PL : the length of the shortest pattern
 Fre : the lowest frequency

Output: M :the sequence of maximal patterns

1. Initial E = ∅ as the set of element maximal

subsequence.
2. Scan S with a PL -length window and locate all

elementary pattern into E with support at least Fre
occurrences.

3. Initial M = ∅ as the sequence of maximal patterns.
4. Push all element subsequences into stack H .
5. While stack H is not empty and the length of S >0:
6. a is the top pattern in H .
7. If the frequency of a in S is larger than Fre :
8. If : there is a pattern b in H holds that

b can prefix or suffix connect [13]
a to c and the frequency of c in
S is equal to or lager than a :

9. Replace a with c
10. Else:
11. Pop a

Delete all the pattern a in S and
insert a into M

12. Return M

326325

Firstly, we use a PL -length window to slide the
system call sequence S , and generate a set of
elementary patterns. Then we push them into a stack H .
These are shown in lines 1-4. Second, we circularly
combine these elementary patterns to recover the
original maximal patterns, and output them. These are
shown in lines 5-11. At last, the sequence of maximal
pattern is returned as shown in line 12. We note that
some uncommon system calls subsequence will be
discarded while only some common ones will be
inserted into M , maximal patterns sequence can
describe program behavior more accurately than system
call sequence. Two main parameters are the length of
the shortest pattern PL and the lowest frequency Fre .
Their influences on obfuscation detection will be
discussed in section 4.

C. Measuring obfuscation by evolutionary similarity
We use evolutionary similarity to measure the

obfuscation similarity between malware variants. In
bioinformatics, evolutionary similarity is a measure of
evolutionary divergence between two homologous
DNA, RNA, or protein sequences. It always use
sequence alignment as a way of arranging the
sequences to identify regions of similarity that may be a
consequence of functional, structural, or evolutionary
relationships between them. We use a similar way to
align two sequences of maximal patterns via inserting
gaps between patterns so that identical patterns are
aligned in successive line. We have researched in the
efficiency of this method on aligning system call
sequence [4].

1M ′ and 2M ′ shows the maximal pattern sequences
after alignment:

1

78,137,78,137

130,124,156,25,119

125,108,25,137,78

M ′ =
−−−−−−−−−−

2

130,124,156,25,119

271,188,271,188

125,108,25,137,78

M

−−−−−−−−−−

′ =

It is based on the hypothesis that in order to align

identical patterns, the more gaps are inserted, the lower
the similarity is. We note that given a pairs of
sequences, there may be different alignments, and
different similarity will be measured for them. We use
the algorithm proposed by [4] to measure the maximal
similarity for any alignments. We supposed two pattern
sequences A and B are:

' , , , , , 'A m i c k e y= ' , , , , , , 'B m i c h a e l=
Firstly, we insert a dump node in the front of two

sequences:
' , , , , , , 'A X m i c k e y′ = ' , , , , , , , 'B X m i c h a e l′ =

We consider []1, 1A BF L L+ + is the similarity score
matrix with A′ placed horizontally at the top and B′

placed vertically on the side, where AL is the length of
A and BL is the length of B . We initialized it by:

[],0 0F i = , [0,]Ai L∈ ; []0, 0F j = , [0,]Bj L∈
Then we recursively calculate [],F i j based on the

principle of optimality. It is assigned to be the optimal
score for the alignment of the first i patterns in A and
the first j patterns in B . During the traversing, [],F i j
is evaluated from the maximal score among []1,F i j− ,

[], 1F i j − and []1, 1F i j d− − + , where if [1]A i −

[1]B i= − , 1d = ,otherwise 0d = . The bottom right
hand corner of the matrix is the maximal score for any
alignments. Figure 1 shows the matrix during the
traversing. Numbers in blue denote the identical pattern
between two sequences. Number in red denotes the
maximal score. And figure 2 shows the two sequences
after alignment.

 X m i c k e y

X 0 0 0 0 0 0 0
m 0 1 1 1 1 1 1
i 0 1 2 2 2 2 2
c 0 1 2 3 3 3 3
h 0 1 2 3 3 3 3
a 0 1 2 3 3 3 3
e 0 1 2 3 3 4 4
l 0 1 2 3 3 4 4
Figure 1. Similarity score matrix

' , , , , , , , '

' , , , , , , , , '
Alignment

A lignm ent

A m i c k e y

B m i c h a e l

= − − −

= − −
Figure 2. Pattern sequences after alignment

IV. EVALUATION AND EXPERIMENTS

A. Date set and Evaluation measures
In order to evaluate the effectiveness of our method,

we detect the obfuscation against real-world malware
variants, we only consider whether a pair of malwares
is variants or not. It is based on the hypothesis that a
high similarity score for two malwares will be
calculated if they are a pair of variants, and a low score
will be calculated if they are not a pair of variants. For
instance, similarity score calculated for Backdoor.
Win32.Bitcon.a and Backdoor.Win32.Bitcon.b should
be high, and the score calculated between Trojan-
PSW.Win32.Deathmin.g and Trojan-PSW.Win32.
Dumbnod.c should be low.

Experiment includes training phase and testing
phase. We randomly chose 505 pairs of variants and

327326

528 pairs of non-variants as our training set, and other
197 pairs of variants and 210 pairs of non-variants as
our testing set. These malwares include Worms,
Trojans and Backdoors, which are named by
Kaspersky. All of the malware samples run in Windows
XP SP2, and we intercept 1000 system calls by Ether
[12] for them. Then, we use algorithm 1 to extract
maximal pattern sequences from system call sequences.
So each malware sample is represented by a sequence
of maximal pattern.

Two major factors we measured are the true positive
rate (TPR) and false positive rate (FPR):

True Positive (TP): Number of variants correctly
classified to be variants.

True Negative (TN): Number of non-variants
correctly classified to be non-variants.

False Positive (FP): Number of non-variants
incorrectly classified to be variants.

False Negative (FN): Number of variants
incorrectly classified to be non-variants.

True Positive Rate (TPR): / ()TPR TP TP FN= +
False Positive Rate (FPR): / ()FPR FP FP TN= +
The goal of our experiment was achieving a high

TPR and a low FPR.

B. Model Training and Classification
The goal of training phase was calculating the

threshold which is used to identify the variants and non-
variants. First, we computed the similarity of 521 pairs
of variants by evolutionary similarity mentioned in
section 3.3, and calculated the average similarity

1

1
01

1 n

i
i

E similarity
n =

= ∑ , 1 505n = . Second, we calculated

the similarity of non-variants. The average similarity of
non-variants was calculated as 2

2
02

1 n

i
i

E similarity
n =

= ∑ ,

2 528n = . The threshold is expressed as:

 2 1 2*()threshold E k E E= + − (1)

We observed three important parameters in

experiments are the PL and Fre in algorithm 1, and
the k in formula (1). The best performance can be
reached when 4, 5PL Fre= = , and 0.35k = . Figure 3
shows the distribution of similarity of training set
when 4, 5PL Fre= = , and 0.35k = , X-axis denotes the
number of variants and non-variants, Y-axis denotes the
similarity of them. The red circles represent variants
and the blue crosses represent non-variants. We can
intuitively observe the variants have higher similarity
score than non-variants. But some specific pairs
violated our assumption. We consider reason is the
malware naming problem.

Figure 3. The similarity of training set with 4, 5PL Fre= = .

True positive rate and false positive rate were
measured in testing phase. First, the similarity of 197
pairs of variants and 210 pairs of non-variants was
calculated. So / ()TPR TP TP FN= + , where TP is the
number of variants pairs whose similarity is above the
threshold, and 197TP FN+ = .False positive rate can be
express as / ()FPR FP FP TN= + , FP is the number of
non-variants pairs whose similarity is above the
threshold, and 210FP TN+ = .

Figure 4. TPR and FPR with 0.35k = .

Figure 4 shows the TPR and the FPR using different
PL and Fre when 0.35k = : X-axis denotes
different PL , and Y-axis denotes Fre and Z-axis
denotes the value of TPR and FPR. We can observe that
bad performance was reached when the value of PL or
Fre is getting lager. And the best performance was
achieved when 4, 5PL Fre= = , it got the TPR of 91.5%
and the FPR of 4.3%.

Figure 5 shows the TPR and FPR using different k
when 4, 5PL Fre= = . In figure 5, X-axis denotes
different k , and Y-axis denotes the value of TPR and
FPR. We can see both the TPR and FPR are getting
lower when k is getting larger. In the middle way, we

328327

consider the best performance can be achieved
when 0.35k = . And its corresponding ROC curve is
shown in Figure 6, with the value of 0.9678AUC = .
A good classify performance was achieved. It
demonstrates that our method has strong resilience to
detecting obfuscation.

Figure 5. TPR and FPR with 4, 5PL Fre= = .

Figure 6. ROC curve with 4, 5PL Fre= = .

V. CONCLUSION AND FUTURE WORK
In this paper, we propose a method to detect

malware obfuscation using maximal patterns. We
extract maximal pattern sequence from the malware’s
runtime system calls, and measure the similarity
between two pattern sequences by evolutionary
similarity. The experiment results have shown that
maximal pattern have strong resilience to malware
obfuscation. So constructing a malware detect system
based maximal patterns matching is our on going work.

ACKNOWLEDGMENT
This work is supported by the Natural Science

Foundation of Zhejiang Province (No. Y1090114), and
the Science and Technology Program of Zhejiang
Province (No: 2008C21075).

REFERENCES
[1] M.Christodorescu, S.Jha, S.A.Seshia, D.Song, and R.E. Bryant.

Semantics-aware malware detection. In Proceedings of the
2005 IEEE Symposium on Security and Privacy, Oakland, CA,
USA, 2005, pp. 32-46.

[2] M.Christodorescu and S.Jha. Static Analysis of Executables to
Detect Malicious Patterns. In 12th USENIX Security
Symposium, 2003, pp. 169–186.

[3] A.Walenstein and A.Lakhotia. The Software Similarity
Problem in Malware Analysis. In Proceedings Dagstuhl
Seminar 06301: Duplication, Redundancy, and Similarity in
Software, Dagstuhl, Germany, July 2006.

[4] Jian Li, Jun Xu, Ming Xu and Ning Zheng. Malware
obfuscation measuring via evolutionary similarity. In first
International Conference on Future Information Networks,
BeiJin,China,2009.

[5] D.Gao, M.Reiter and D.Song. Behavioral Distance for
Intrusion Detection. In 8th International Symposium on Recent
Advances in Intrusion Detection. September 2005. pp. 63-81.

[6] C.Collberg, C.Thomborson and D.Low. A taxonomy of
obfuscating transformations. Technical Report 148,
Department of Computer science, University of Auckland,
New Zealand, 1997.

[7] M. Christodorescu, S. Jha, J. Kinder , S. Katzenbeisser, and H.
Veith. Software transformations to improve malware detection.
Journal in Computer Virology, 2007,3(4),pp.253-265.

[8] A.H.Sung, Jianyun Xu, P.Chavez, and S.Mukkamala. Static
analyzer of vicious executables (save). In 20th Annual
Computer Security Applications Conference, Tucson, AZ,
USA, 2004, pp. 326-334,2004.

[9] A.Moser, C.Kruegel, and E.Kirda. Limits of Static Analysis for
Malware Detection. In Proceeding of Twenty-Third Annual
Computer Security Applications Conference, 2007, pp. 421–
430.

[10] A. Wespi, M. Dacier, and H. Debar. Intrusion detection using
variable-length audit trail patterns. In Proceedings of the 2000
Recent Advances in Intrusion Detection, Toulouse, France,
2000, pp. 110-129.

[11] C.Collberg and C. Thomborson. Watermarking, tamper-
proofing, and obfuscation – tools for software protection.
Technical Report 170, Department of Computer Science,
University of Auckland, 2000.

[12] A.Dinaburg and P.Royal, Ether: Malware Analysis via
Hardware Virtualization Extensions. In 15th ACM Conference
on Computer and Communications Security, Alexandria,
Virginia, USA, 2008.

[13] I.Rigoutsos and A.Floratos. Combinatorial pattern discovery in
biological sequences: the TEIRESIAS algorithm.
Bioinformatics, 1998, 14(1):55–67.

329328

