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Abstract—Malware obfuscation is defined as a program 
transformation. It is always used in malware to evade 
detection from anti-malware software. In this paper, we 
propose a method to detect malware obfuscation using 
maximal patterns. Maximal pattern is a subsequence in 
malware’s runtime system call sequence, which 
frequently appears in program execution, and can be 
used to describe the program specific behavior. The 
maximal pattern sequence is extracted from the 
malware’s runtime system calls, and the similarity 
between two pattern sequences will be measured by 
evolutionary similarity. Based on the real-world 
malwares test data, the experiment results have shown 
that our method can efficiently detect malware 
obfuscation. 
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I.  INTRODUCTION 
A malware is a program that has malicious intend. It 

includes viruses, Trojans, worms, backdoors and so on. 
Obfuscation is defined as program transformation, 
which includes metamorphism and polymorphism. A 
metamorphic malware obfuscates the entire program 
using several transformations, such as Dead-code 
Insertion, Register Reassignment, Instruction 
Substitution and Code Transposition, while 
polymorphic malware only uses these transformations 
to obfuscate its decryption loops [1]. They are used by 
malware authors for a long time. And anti-malware 
software which uses simple signature matching 
approaches is vulnerable to them. In order to improve 
the resilience of anti-malware software, it is necessary 
to detect the obfuscation in malwares. 

Besides, due to the voluntary sharing of ideas and 
code in malware production community, there are a 
small numbers of authors who produce completely new 
malicious programs. Rather, most of different malicious 
programs are modifications of some previous one [3]. 
In a given malware family, malware always evolves 
with a bit change by borrowing or copying code from 
previous edition. So measuring the similarity between 
unknown mal-sample and existing malware can 

improve the efficiency and effectiveness of malware 
analysis. And it is expected to help reconstructing 
malware phylogenies by using similarity techniques. 

In this paper, we use maximal patterns to detect the 
obfuscation. A maximal pattern represents a specific 
subsequence in malware’s runtime system calls 
sequence. It has the ability to describe the program 
specific behavior, and can be used to detect obfuscation 
accurately. We extract maximal pattern sequence from 
the sequence of system calls, and measure the similarity 
between two maximal pattern sequences by 
evolutionary similarity. Our experiments have shown 
that our method can detect the real-world malware 
obfuscation with high accuracy and strong resilience. 

II. RELATE WORK 
Obfuscations have been used for a long time to 

evade detection of malware. In [6], authors discussed 
some obfuscation technologies from the view of 
malware detection. Some static analysis approaches 
have been proposed for obfuscation detection. For 
instance, semantics templates were created in [1] to 
detect malicious traits, these templates were created 
based on instruction, variable and symbolic constants. 
Authors in [7] used software transformations to 
improve malware detection. In [2], authors present an 
architecture for detecting malicious patterns in 
executables that is resilient to common obfuscation. [8] 
detected obfuscation based on the hypothesis that all 
versions of the same malware share a common core 
signature which is a combination of several features of 
the code. While, some limits of static analysis for the 
detection of malicious code are explored in [9]. In this 
paper, we use dynamic information to detect malware 
obfuscation. 

Besides, Obfuscation techniques are not only 
relevant to detecting morphed code but also several 
other issues. [11] present the relationship between 
obfuscation technology and protection of intellectual 
property rights present in proprietary software. [3] 
provide a brief introduction to the issue of measuring 
similarity between malicious programs, and how 
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software evolution history refactoring is known to occur 
in the area.  

Some relevant works to us have been done in the 
area of intrusion detection and bioinformatics. In [13], 
authors discover variable-length combinatorial pattern 
in biological sequences. In [10], authors used variable-
length patterns to construct intrusion detection system. 
And [5] used system calls to detect sophisticated 
mimicry attacks in intrusion detection system.  

III. MALWARE OBFUSCATION MEASURING 
Maximal pattern is a subsequence in malware’s 

runtime system call sequence, which can describe 
program specific behavior suitably. We firstly extract 
maximal pattern sequence from the runtime sequence of 
system calls, and measure the similarity between two 
maximal pattern sequences by evolutionary similarity. 
We use this similarity to detect obfuscation. Experiment 
results show that our method can efficiently detect the 
malware obfuscation. 

A. Describe malware behavior using dynamic 
information  
Runtime sequence of system calls is used to detect 

obfuscation. Using dynamic information of malware 
process can bypass the obstacle caused by encryption 
and pack technology, since program will decrypt and 
unpack itself when it executes in operating system. As 
the way for a program to interact with the operating 
system, system calls represent important events 
occurred when process executes. Besides, since system 
calls have higher system abstractness than instructions, 
some obfuscation transformations based on instruction 
level, which includes dead-code insertion, register 
reassignment and instruction substitution, have litter 
effect on malware’s runtime behavior. So system calls 
are more resilient to code obfuscation technologies. 

The number of the system calls is fixed for a special 
operating system version. For instance, Windows XP 
SP2 has 284 system calls named begin with “Nt”. The 
system call number covers from 0 to 283. We trace the 
system calls at runtime. Figure 1 shows two sequences 
of system calls, 

1S denotes a part of system call 
sequence of Backdoor.Win32. AcidShiver.a, and 

2S  
denotes a part of Backdoor.Win32.AcidShiver.f: 

 
1 78,137,78,137,130,124,156,25,119,125,108,25,137,78S =   
2 130,124,156,25,119,271,188,271,188,125,108,25,137,78S =

 
In our experiments, we use Ether [12] as our system 

call tracer. Ether traces system calls via hardware 
virtualization. It remains transparent to target process 
and can keep a high tracing accuracy. 

B. Extracting maximal pattern sequence from system 
call 
We define a pattern represents a subsequence in 

malware’s runtime system calls sequence. It frequently 
appears in program execution, and thus might 
correspond to specific task on operating system or to a 
basic block in program’s source code [5]. A pattern a  
in system calls sequence S  is a maximal pattern only if 
there is no pattern b for which holds that b  contains 
a and the number of occurrences of b  is equal to or 
lager than the number of occurrences of a . 

System call sequence can be divided into a sequence 
of maximal patterns. For instance, 

1M is the maximal 
pattern sequence divided from

1S , and
2M is the 

maximal pattern sequence divided from
2S :  

1

78,137,78,137

130,124,156,25,119

125,108,25,137,78

M =

     

2

130,124,156,25,119

271,188,271,188

125,108,25,137,78

M =

 
We suppose M is the maximal pattern sequence 

divided from system call sequence S .We extract the 
maximal pattern sequence from system call sequence 
using algorithm 1: 

 
Algorithm 1: Extract maximal pattern sequence from 
system call sequence. 
Input:     S : sequence of system calls  

  PL : the length of the shortest pattern 
 Fre : the lowest frequency 

Output:  M :the sequence of maximal patterns  
 
1. Initial E = ∅  as the set of element maximal 

subsequence. 
2. Scan S  with a PL -length window and locate all 

elementary pattern into E  with support at least Fre  
occurrences. 

3. Initial M = ∅ as the sequence of maximal patterns.  
4. Push all element subsequences into stack H . 
5. While stack H is not empty and the length of S >0: 
6.     a  is the top pattern in H . 
7.       If the frequency of a  in S  is larger than Fre : 
8.                  If :  there is a pattern b  in H  holds that 

b  can prefix or suffix  connect [13] 
a  to c and the frequency of c  in 
S  is equal to or lager than a : 

9.                         Replace a with c  
10.            Else:  
11.              Pop a   

Delete all the pattern a  in S  and 
insert a into M   

12. Return  M  
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Firstly, we use a PL -length window to slide the 
system call sequence S , and generate a set of 
elementary patterns. Then we push them into a stack H . 
These are shown in lines 1-4. Second, we circularly 
combine these elementary patterns to recover the 
original maximal patterns, and output them. These are 
shown in lines 5-11. At last, the sequence of maximal 
pattern is returned as shown in line 12. We note that 
some uncommon system calls subsequence will be 
discarded while only some common ones will be 
inserted into M , maximal patterns sequence can 
describe program behavior more accurately than system 
call sequence. Two main parameters are the length of 
the shortest pattern PL  and the lowest frequency Fre . 
Their influences on obfuscation detection will be 
discussed in section 4. 

C. Measuring obfuscation by evolutionary similarity 
We use evolutionary similarity to measure the 

obfuscation similarity between malware variants. In 
bioinformatics, evolutionary similarity is a measure of 
evolutionary divergence between two homologous 
DNA, RNA, or protein sequences.  It always use 
sequence alignment as a way of arranging the 
sequences to identify regions of similarity that may be a 
consequence of functional, structural, or evolutionary 
relationships between them. We use a similar way to 
align two sequences of maximal patterns via inserting 
gaps between patterns so that identical patterns are 
aligned in successive line. We have researched in the 
efficiency of this method on aligning system call 
sequence [4]. 

1M ′  and 2M ′  shows the maximal pattern sequences 
after alignment: 

1

78,137,78,137

130,124,156,25,119

125,108,25,137,78

M ′ =
−−−−−−−−−−

   

2

130,124,156,25,119

271,188,271,188

125,108,25,137,78

M

−−−−−−−−−−

′ =

 
It is based on the hypothesis that in order to align 

identical patterns, the more gaps are inserted, the lower 
the similarity is. We note that given a pairs of 
sequences, there may be different alignments, and 
different similarity will be measured for them. We use 
the algorithm proposed by [4] to measure the maximal 
similarity for any alignments. We supposed two pattern 
sequences A and B  are: 

' , , , , , 'A m i c k e y=       ' , , , , , , 'B m i c h a e l=   
Firstly, we insert a dump node in the front of two 

sequences:  
' , , , , , , 'A X m i c k e y′ =    ' , , , , , , , 'B X m i c h a e l′ =  

We consider [ ]1, 1A BF L L+ +  is the similarity score 
matrix with A′  placed horizontally at the top and B′  

placed vertically on the side, where AL is the length of 
A and BL  is the length of  B . We initialized it by: 

[ ],0 0F i = , [0, ]Ai L∈ ; [ ]0, 0F j = , [0, ]Bj L∈  
Then we recursively calculate [ ],F i j  based on the 

principle of optimality. It is assigned to be the optimal 
score for the alignment of the first i  patterns in A and 
the first j  patterns in B . During the traversing, [ ],F i j  
is evaluated from the maximal score among [ ]1,F i j− , 

[ ], 1F i j −  and [ ]1, 1F i j d− − + , where if [ 1]A i −  

[ 1]B i= − , 1d = ,otherwise 0d = . The bottom right 
hand corner of the matrix is the maximal score for any 
alignments. Figure 1 shows the matrix during the 
traversing. Numbers in blue denote the identical pattern 
between two sequences. Number in red denotes the 
maximal score. And figure 2 shows the two sequences 
after alignment. 

 
 X m i c k e y 

X 0 0 0 0 0 0 0 
m 0 1 1 1 1 1 1 
i 0 1 2 2 2 2 2 
c 0 1 2 3 3 3 3 
h 0 1 2 3 3 3 3 
a 0 1 2 3 3 3 3 
e 0 1 2 3 3 4 4 
l 0 1 2 3 3 4 4 
Figure 1.             Similarity score matrix 

 
' , , , , , , , '

' , , , , , , , , '
Alignment

A lignm ent

A m i c k e y

B m i c h a e l

= − − −

= − −  
Figure 2.  Pattern sequences after alignment 

IV. EVALUATION AND EXPERIMENTS 

A. Date set and Evaluation measures 
In order to evaluate the effectiveness of our method, 

we detect the obfuscation against real-world malware 
variants, we only consider whether a pair of malwares 
is variants or not. It is based on the hypothesis that a 
high similarity score for two malwares will be 
calculated if they are a pair of variants, and a low score 
will be calculated if they are not a pair of variants. For 
instance, similarity score calculated for Backdoor. 
Win32.Bitcon.a and Backdoor.Win32.Bitcon.b should 
be high, and the score calculated between Trojan-
PSW.Win32.Deathmin.g and Trojan-PSW.Win32. 
Dumbnod.c should be low.  

Experiment includes training phase and testing 
phase. We randomly chose 505 pairs of variants and 
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528 pairs of non-variants as our training set, and other 
197 pairs of variants and 210 pairs of non-variants as 
our testing set. These malwares include Worms, 
Trojans and Backdoors, which are named by 
Kaspersky. All of the malware samples run in Windows 
XP SP2, and we intercept 1000 system calls by Ether 
[12] for them. Then, we use algorithm 1 to extract 
maximal pattern sequences from system call sequences. 
So each malware sample is represented by a sequence 
of maximal pattern. 

Two major factors we measured are the true positive 
rate (TPR) and false positive rate (FPR): 

True Positive (TP): Number of variants correctly 
classified to be variants. 

True Negative (TN): Number of non-variants 
correctly classified to be non-variants. 

False Positive (FP): Number of non-variants 
incorrectly classified to be variants. 

False Negative (FN): Number of variants 
incorrectly classified to be non-variants. 

True Positive Rate (TPR):  / ( )TPR TP TP FN= +  
False Positive Rate (FPR): / ( )FPR FP FP TN= +  
The goal of our experiment was achieving a high 

TPR and a low FPR. 

B.  Model Training and Classification 
The goal of training phase was calculating the 

threshold which is used to identify the variants and non-
variants. First, we computed the similarity of 521 pairs 
of variants by evolutionary similarity mentioned in 
section 3.3, and calculated the average similarity 

1

1
01

1 n

i
i

E similarity
n =

= ∑ , 1 505n = . Second, we calculated 

the similarity of non-variants. The average similarity of 
non-variants was calculated as 2

2
02

1 n

i
i

E similarity
n =

= ∑ , 

2 528n = . The threshold is expressed as:  
 
 2 1 2*( )threshold E k E E= + −                       (1) 
 
We observed three important parameters in 

experiments are the PL  and Fre  in algorithm 1, and 
the k in formula (1). The best performance can be 
reached when 4, 5PL Fre= = , and 0.35k = . Figure 3 
shows the distribution of similarity of training set 
when 4, 5PL Fre= = , and 0.35k = , X-axis denotes the 
number of variants and non-variants, Y-axis denotes the 
similarity of them. The red circles represent variants 
and the blue crosses represent non-variants. We can 
intuitively observe the variants have higher similarity 
score than non-variants. But some specific pairs 
violated our assumption. We consider reason is the 
malware naming problem. 

 
Figure 3.  The similarity of training set with 4, 5PL Fre= = . 

True positive rate and false positive rate were 
measured in testing phase. First, the similarity of 197 
pairs of variants and 210 pairs of non-variants was 
calculated. So / ( )TPR TP TP FN= + , where TP is the 
number of variants pairs whose similarity is above the 
threshold, and 197TP FN+ = .False positive rate can be 
express as / ( )FPR FP FP TN= + , FP is the number of 
non-variants pairs whose similarity is above the 
threshold, and 210FP TN+ = .  

 
Figure 4.  TPR and FPR with 0.35k = . 

Figure 4 shows the TPR and the FPR using different 
PL  and Fre  when 0.35k = : X-axis denotes 
different PL , and Y-axis denotes Fre  and Z-axis 
denotes the value of TPR and FPR. We can observe that 
bad performance was reached when the value of PL  or 
Fre  is getting lager. And the best performance was 
achieved when 4, 5PL Fre= = , it got the TPR of 91.5% 
and the FPR of 4.3%. 

Figure 5 shows the TPR and FPR using different k  
when 4, 5PL Fre= = . In figure 5, X-axis denotes 
different k , and Y-axis denotes the value of TPR and 
FPR. We can see both the TPR and FPR are getting 
lower when k  is getting larger. In the middle way, we 
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consider the best performance can be achieved 
when 0.35k = . And its corresponding ROC curve is 
shown in Figure 6, with the value of 0.9678AUC = . 
A good classify performance was achieved. It 
demonstrates that our method has strong resilience to 
detecting obfuscation. 

 
Figure 5.  TPR and FPR with 4, 5PL Fre= = . 

 
Figure 6.  ROC curve with 4, 5PL Fre= = . 

V. CONCLUSION AND FUTURE WORK 
In this paper, we propose a method to detect 

malware obfuscation using maximal patterns. We 
extract maximal pattern sequence from the malware’s 
runtime system calls, and measure the similarity 
between two pattern sequences by evolutionary 
similarity. The experiment results have shown that 
maximal pattern have strong resilience to malware 
obfuscation. So constructing a malware detect system 
based maximal patterns matching is our on going work. 
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