
2009 First International Conference on Future Information Networks

Malware Obfuscation Measuring via Evolutionary
Similarity

Jian Li * Jun Xu # Ming Xu * HengLi Zhao * Ning Zheng *
* Institute of Computer Application Technology, Hangzhou Dianzi University, P. R. China.

The Third Research Institute of The Ministry of Public Security, P. R. China.
lijiandm@163.com xujun@stars.org.cn huxhc2008@ 163.com {mxu,nzheng}@hdu.edu.cn

Abstract- With prevailing of the malware, it is necessary to
measure the malware obfuscation. We traced the system calls as
the dynamic action of malware, and used evolutionary similarity
to measure obfuscation. An algorithm, which uses sequence
alignment as a way of arranging the sequences to identify similar
regions, has been proposed to calculate the similarity. We used
real-world malwares to test the resilience of our method. Our
experiment has shown that our method has strong resilience
against common obfuscation technologies.

Keywords-malware; obfuscation; similarity; evolutionary
similarity

I. INTRODUCTION

A malware is a program that has malicious intend. It
includes viruses, Trojans, worms, backdoors and so on. Some
obfuscation technologies are used by malware authors to evade
signature detection from anti-malware software.
Polymorphism and metamorphism are two common
obfuscation technologies. A polymorphic malware obfuscates
its decryption loops using several transformations, such as
Dead-code Insertion, Code Transposition, Register
Reassignment and Instruction Substitution, while metamorphic
malware uses these transformations to obfuscate the entire
program. Anti-malware software which uses pattern-matching
approaches is vulnerable to these obfuscation technologies [1].
In order to improve the resilience of anti-malware software it
is necessary to measuring the obfuscation similarity' in
malwares.

Besides, due to the voluntary sharing of ideas and code in
malware production community, there are a small numbers of
authors who produce completely new malicious programs.
Rather, most of the different malicious programs are
modifications of some previous one [2]. In a given malware
family, malware always evolves with a bit change by
borrowing or copying code between families. So measuring
the similarity between unknown mal-sample and given
malware can improve the efficiency and effectiveness of
malware analysis. And it is expected to help reconstructing
malware phylogenies by using similarity techniques [3].

In this paper, we use evolutionary similarity to measure the
obfuscation similarity between malware variants. In

978-1-4244-5160-9/09/$26.00 ©2009 IEEE

bioinformatics, evolutionary similarity is a measure of
evolutionary divergence between two homologous DNA, RNA,
or protein sequences. We analyzed two malwares' runtime
sequence of system calls, which is the only way for a program
to interact with the operating system and a natural place to
intercept a program and perform monitoring, since system
calls often require a context switch [4]. An algorithm was
proposed to measure the evolutionary similarity between the
two sequences of system calls. Our experimental results
demonstrated our method is resilient to common obfuscation
technologies.

II. RELATE WORK

Obfuscation is defmed as program transformation. In [5],
authors discussed some obfuscation technology from the view
of malware detection. [1] present an architecture for detect
malicious patterns in executables that is resilient to common
obfuscation. Some semantic based research such as [6] created
semantics templates to detect malicious traits. These templates
were created based on instruction, variable and symbolic
constants. A robust signature-based malware obfuscation
detection technique is introduced in [7]. It was based on the
hypothesis that all versions of the same malware share a
common core signature which is a combination of several
features of the code. The major difference between these
researches and our method is that we use dynamic action as the
description of mal-program while the others use static
information.

Besides, Obfuscation techniques are not only relevant to
detecting morphed code but also several issues. [8] present the
relationship between obfuscation technology and protection of
intellectual property rights present in proprietary software. [2]
provided a brief introduction to the issue of measuring
similarity between malicious programs, and how software
evolution history refactoring is known to occur in the area. [4]
used system calls, which is a dynamic action, to detect
sophisticated mimicry attacks in intrusion detection system. In
bioinformatics, some technologies have been used to detect
evolutionary divergence between two homologous DNA, RNA,
or protein sequences [9]. The method was based on aligning
long sequences which can uniquely represent the organism.
These issues have some common characters to malware

obfuscation detection. In this paper, we use evolutionary
similarity to measure the malware obfuscation.

III. MALWARE OBFUSCATION MEASURING

A. Describemalwarebehaviorusing system calls
Due to some software protection technologies used by

malware authors, measuring program behavior from the static
information must meet some difficulties. First, encryption and
pack technologies have been widely used to prevent the mal­
program to be dissembled for malware analysis. Second,
signature matching approach, which is used to detect malware,
is vulnerable to obfuscation technology. And then, it is
difficult to exactly reconstructing the semantic based malware
behavior from static information.

We use the runtime sequence of system calls to represent
the behavior of a malware. Using dynamic information of
malware process can bypass the obstacle caused by encryption
and pack technology, since program will decrypt and unpack
itself when it executes in operating system. As the way for a
program to interact with the operating system, system calls
represent important events occurred when process executes.
Besides, since system calls have higher system abstractness
than instructions, some obfuscation transformations based on
instruction level, which includes dead-code insertion, register
reassignment and instruction substitution, have litter effect on
malware's runtime behavior. So system calls are more resilient
to code obfuscation technologies. Our experiment results,
which show the resiliency of our method, will be described in
section 4.

The number of the system calls is fixed for a special
operating system version. So the behavior of mal-process can
be expressed as a sequence of a fmite set of states. For instance,
Windows XP SP2 has 284 system calls whose names begin
with "Nt". The system call number covers from °to 283. We
trace the system calls at runtime, and describe the behavior of
mal-process as a sequence of system call number. For example,
figure 1 shows two sequences of system calls. Each of them
represents the runtime behavior ofa process.

A: 119,280, 173, 17, 113, 127, 25

B: 119, 280, 17, 113, 127, 170, 25

Figure 1.

In our experiments, we use Ether [10] as our system call
tracer. Ether traces system calls via hardware virtualization, it
remains transparent to target process and can keep a high
tracing accuracy.

B. Similaritymeasuringalgorithm description
We use evolutionary similarity to measure the obfuscation

similarity between malware variants. In bioinformatics,
evolutionary similarity is a measure of evolutionary
divergence between two homologous DNA, RNA, or protein
sequence. It always use sequence alignment as a way of
arranging the sequences to identify regions of similarity that

may be a consequence of functional, structural, or evolutionary
relationships between them. We use a similar way to align two
sequences of system calls via inserting gaps between the
system calls so that identical numbers are aligned in successive
columns. Figure 2 shows the alignment of two sequences:

A: 119, 280, 173, 17, 113, 127, -- ,25

B: 119, 280, -- , 17, 113, 127, 170, 25

Figure 2.

It is based on the hypothesis that in order to align identical
numbers, the more gaps are inserted, the lower the similarity is.
Because the sequences are getting longer but the number of
identical numbers have not changed. In figure 2, the number of
identical system call numbers is 6, which can be express
as Nidentical =6 . And the length after alignment is 8, which is

expressed as L I" =8. So the similarity can be calculated
a ignment

as:

Similarity (A, B) = Nidentical =0.75
Lalignment

We note that given a pairs of sequences, there may be
different alignments. And different similarity will be measured
for them. We propose an algorithm to measure the maximal
similarity for any alignments. First we defme a similar matrix
S to specify the scores for aligned system call numbers. Here,
S[i,j] is the similarity for system call i andj . In Windows

XP SP2, the system call number covers from °to 283.We
defme matrix S as: forVO~i~283,O~j~283: S[i,j]=1

when i = j ; S [i, j] = °when i * j .The algorithm is shown

as follows:

Algorithm 1: Calculate evolutionary similarity between two
sequences:

Input: similar matrix S , gap penalty d , sequence A and B .

Output : similarity between sequence A and B .

1 La =length of A, Lb =length of B .

2 Initial matrix F [La +1,Lb +1]as the two-dimensional matrix

to fmd the alignment.

3 Initial matrix P [La, Lb] to recode the choice during the

dynamic programming.

4 for i=O~La : F[i,O]=dxi

5 for j=O~Lb :F[O,j]=dxj

6 for i =1~ La :

7 for j =1~ Lb :

8 choicel =F[i -1,j -1]+S[A[i -1],B[i -1]]

9 choice2 =F [i -1, j] +d

B. Classification method and experiments results

Our experiment consists of training phase and testing phase.
We prepared 521 pairs of variants and 515 pairs of non­
variants as our training set, and used other 187 pairs of
variants and 172 pairs ofnon-variants as our testing set.

False positive rate (FPR): The rate that a pair of non-variants
was classified to a pairs of variants.

The goal of our experiment was achieving a high TPR and
a low FPR. The method on measuring them will be discussed
in section 4.2. All of the malware samples run in Windows XP
SP2, and we traced the system calls by Ether [10].

The goal of training phase was calculating the threshold
which is used to identify the variants and non-variants. First,
we computed the similarity of 521 pairs of variants by
algorithm 1, and calculated the average

. '1 . 1 nl 521 S dSImI anty E
1
=- Lsimilarity; , nl = . econ, we

n1 ;=0

calculated the similarity of non-variants. The average

d El E2 threshold

0 0.86 0.41 0.64

0.1 0.86 0.44 0.65

0.2 0.88 0.5 0.69

0.3 0.89 0.56 0.73

0.4 0.91 0.62 0.77

0.5 0.6 0.48 0.54

0.6 0.58 0.58 0.58

0.7 0.68 0.68 0.68

0.8 0.78 0.78 0.78

0.9 0.89 0.89 0.89

1 1 1 1

THE THRESHOLD USING DIFFERENT GAP PENALTYTABLE!.

A. Preprocessing

After we got the sequences from system call tracer, we
must preprocess them before calculate similarity. Because
program may have different states when they are in different
environments, firstly we aggregated consecutive occurrences
of the same system call number and removed 2-length
duplicate sub-sequence. The aggregation and reduction phase
was an experiment choice, which can improve the TPR. The
duplicate sub-sequences which were longer than 2 will not be
removed because removing them can not affect the experiment
results obviously.

Second, 54 system calls at the beginning of each sequence
should be removed. It was also an experiment choice. We
observed every sequence has the same 54 system calls at the
beginning. We believed that they were generated by programs
initialization. Experiment results have shown that remove
them would improve the TPR and reduce the FPR.

F[/I,/2]
20 return: SimilarityiA, B) =----.;;;~~

La

Our algorithm is an example of dynamic programming.
First, we'll do some initialization work in lines 1-5. And then,

we recursively calculate F [i, j] based on the principle of

optimality. It is assigned to be the optimal score for the
alignment of the first i characters in A and the first j
characters in B . And the bottom right hand comer of the
matrix is the maximal score for any alignments. During the
traversing of matrix A , the optimality choices have been
recorded in matrix P . This is shown in lines 6-12.

Due to our goal is getting the maximal similarity score
between a pair of sequence, there is no necessary to get two
aligned sequences. P[i,j] records the choices during the

dynamic programming. We traverse matrix P from the bottom
right hand comer and only calculate the length of aligned
sequence. This is shown in lines 13-19. At line 20, the
maximal score is divided by aligned length for normalization,
which is returned as the similarity.

12 The max choice is recorded into P[i -1,j -1].

10 choice3=F[i,j-I]+d

11 F[i,j] = max {choicel,choice2,choice3}

IV. EVALUATION AND EXPERIMENTS

In order to verify the effectiveness of our method, we
evaluated our implementation of our algorithm against real­
world malware variants. It is based on the hypothesis that a
high evolutionary similarity score for two malwares will be
calculated if they are a pair of variants, and a low score will be
calculated if they are not a pair of variants. For instance,
similarity score calculated for Backdoor.Win32.Bitcon.a and
Backdoor.Win32.Bitcon.b should be high, and the score
calculated between Trojan-PSW.Win32.Deathmin.g and
Trojan-PSW.Win32.Dumbnod.c should be low. Two major
factors we measured are the true positive rate and false
positive rate:

True positive rate (TPR): The rate that a pairs of real-world
variants were classified correctly.

13 II =La,/2 =Lb

14 while i > 0 and j > 0 :

15 if P[i,j] == choice! : i --,j--

16 else if P[i,j]==choice2: i--,Lb++

17 else if P[i,j]==choice3: j--,La++

18 while i>O: i--,Lb++

19 while j>O:j--,La++

Figure 3: True positive rate and false positive rate

--+-- Tr ue posi t i ve ra t e

- -.- - Fa l se posi t ive rate

'\ 11'"
\ . /

\ .III /... / /
..-- ..-- ..-- ..- .

...

similarity of non-variants was calculated as

E
2

= -.!..-t similarity, ' nz =515 . So the threshold can be
n2 i=O

expressed as: threshold = E, + E2 • We denoted the gap
2

penalty d was the only variable in our algorithm, we compared

the threshold with differentd . We have shown the threshold
in table 1.

TPR and FPR were measured in testing phase. First, the
similarity of 187 pairs of variants and 172 pairs of non­
variants was calculated by algorithm 1. So classify accuracy

can be expressed as TPR =!2, ~ is the number of variants
n4

pairs whose similarity is above the threshold, and n, = 187 .

False positive rate can be expressed as FPR =!!l, ns is the
n6

number of non-variants pairs whose similarity is above the
threshold, and n

6
= 172 . The classify accuracy and false

positive rate with different gap penalty d have been shown in
figure 3:

120. 00%
100. 00%

80. 00%
60. 00%
40. 00%
20. 00%

0.00%

o 0. 10. 2 0. 30. 4 0. 50. 6 0.70. 8 0. 9

In figure 3, X-axis denotes different gap penalty d , and Y­
axis denotes the classify accuracy and false positive rate. We
can observe that bad performance was reached when the value
of d is equal or higher than 0.5. We observed the reason is
that the alignment of sequences is disorderly when d reached
0.5. High TPR and low FPR can be achieved when the value
of d is below 0.5. And the best performance was achieved
when d =0.1 , it got the TPR of 94.65% and the FPR of
3.49%. So resilience of our method can be demonstrated.

V. CONCLUSION AND FUTURE WORK

In this paper, we used evolutionary similarity to measure
malware obfuscation. An algorithm has been proposed to
calculate the similarity. We used real-world malwares to test

the resilience of our method. The resilience was weighed by
true positive rate and false positive rate. Our experiment has
shown that our method has strong resilience against real-world
malware obfuscation.

The problem has been cognizant that the dynamical action
of program is not unique, which depends on the runtime
environment and the input value. In another aspect, sequence
of system calls cannot completely depict the program
dynamical action. So how to reduce the uncertainty of
dynamical action description and use more complicated and
effective module to depict the program action is our ongoing
work.

ACKNOWLEDGMENT

This work is supported by the Natural Science Foundation
of Zhejiang Province (No. Y1090114), and the Science and
Technology Program of Zhejiang Province (No: 2008C21 075) .

REFERENCES

[l] M.Christodorescu and S.Jha. Static Analysis of Executables to Detect
Malicious Patterns. In 12th USENIX Security Symposium, 2003, pp.
169-186.

[2] A.Walenstein and ALakhotia. The Software Similarity Problem in
Malware Analysis. In Proceedings Dagstuhl Seminar 06301:
Duplication , Redundancy , and Similarity in Software, Dagstuhl,
Germany, July 2006.

[3] E.Karim, AWalenstein and A.Lakhotia, Malware phylogeny using
maximal Jr -patterns. In proceeding of the EICAR 2005 Conference ,
2005.pp.167-174.

[4] D.Gao, M.Reiter and D.Song. Behavioral Distance for Intrusion
Detection . In 8th International Symposium on Recent Advances in
Intrusion Detection . September 2005. pp. 63-81.

[5] C.Collberg, C.Thomborson and D.Low. A taxonomy of obfuscating
transformations. Technical Report 148, Department of Computer
science, University of Auckland, New Zealand, 1997.

[6] M.Christodorescu, S.Jha, S.A.Seshia, D.Song, and R.E. Bryant.
Semantics-aware malware detection. In Proceedings of the 2005 IEEE
Symposium on Security and Privacy, Oakland, CA, USA, pp. 2005: 32­
46.

[7] Andrew H. Sung, Jianyun Xu, Patrick Chavez, and Srinivas Mukkamala,
Static analyzer of vicious executables (save) . In 20th Annual Computer
Security Applicat ions Conference , Tucson, AZ, USA, 2004, pp. 326­
334,2004.

[8] C. Collberg and C. Thomborson. Watermarking, tamper-proofing, and
obfuscation - tools for software protection . Technical Report 170,
Department ofComputer Science, University of Auckland , 2000.

[9] M.Brudno, S.Malde, A.Poliakov, C.B.Do, O.Couronne, I.Dubchak and
S.Batzoglou. Glocal AlignmentFinding Rearrangements During
Alignment. Bioinformatics, 2003, 19(90001), pp. 54i-62.

[10] ADinaburg and P.Royal, Ether: Malware Analysis via Hardware
Virtualization Extensions. In 15th ACM Conference on Computer and
Communications Security, Alexandria , Virginia, USA, 2008.

