
Unknown Malware Detection Based on the Full Virtualization and SVM

Hengli Zhao, Ning Zheng, Jian Li
Institute of Computer Application Technology

HangZhou DianZi University
Hangzhou,China

e-mail: zhenry86@163.com, nzheng@hdu.edu.cn

Jingjing Yao, Qiang Hou
 The Third Research Institute of the Ministry of Public

Security
ShangHai,China

e-mail: yjj@mail.trimps.ac.cn

Abstract—Malware has become the centerpiece of security
threats on the e-commercial business. The focus of malware
research is shifting from using signature patterns to identifying
the malicious behavior patterns. Many researcher extract
behavior pattern from system call sequences to identify
malware from benign programs with data mining techniques.
Most system call tracing tools must run alongside the malware
in the same system environment and could be easily detected
by malware. In this paper, we propose a new system calls
tracing system based on the full virtualization via Intel-VT
technology. Malicious samples are running in a GuestOS and
they can not detect the existence of system call tracing tool
running in the HostOS. We collect a system call trace data set
from 1226 malicious and 587 benign executables. An
experiment based on the SVM model shows that the proposed
method can detect malware with strong resilience and high
accuracy.

Keywords-malware; full virtualization; native API sequence;
SVM

I. INTRODUCTION
A Malware are computer programs which do damage or

inconvenience to computer users. Security threat posed by
malware such as viruses, worms, trojan horses, rootkit are
becoming more serious. Traditional signature-based
detection performs poorly especially malware author employ
polymorphism and metamorphism methods to frustrate
analysis. Other malware research turns to the analysis based
on malware behavior, because no matter the disguise,
malware will behave badly. One technique for behavior
analysis is using data mining techniques to automatically
extract behavior pattern from malware and benign programs.
Researcher trace the sequence of system calls as the program
behavioral characteristics, because system call is the only
way for a program to interact with the operating system, it’s
natural place to intercept a program and perform monitoring
[1].

Traditional tools for obtaining system calls include
disassemblers, debuggers and hooking system calls in a
dynamic black box. These tools are vulnerable to dynamic
code translation and debugger fingerprinting [2]. Dynamic
hooking tools rely on monitoring a program once it is
running in a virtual machine (VM) to isolate and roll back
the system when damage happens. Unfortunately, malware
authors are using anti-virtualization [3] to evade detection.
When the malware detects it is running inside a VM, it will

often exit or behave differently to fool analyzers and conceal
its intentions.

In this paper, we design a system call tracing system
based on full virtualization via Intel VT. We place trace
program running in HostOS and target program running in
GusetOS, trace tool can get system call events of GuestOS
through the virtual machine monitor (VMM) and virtual
machine control structure (VMCS). We capture special VT-
transition to identify the process and get the sequence of
system calls at real-time.

In summary, this paper makes contributions as follows:
• We design a robust system call tracing system based

on full virtualization via Intel VT. The trace system
could be transparent to the malware application.

• We use SVM to extract the various features from the
system call sequences of malware and benign
programs, and then construct a model for malware
detection.

The rest of this paper is organized as follows: Section 2
describes the related work. Section 3 describes our system
call trace system. Section 4 details the construction of SVM
model and the experiment results. Section 5 concludes this
paper and gives the future work.

II. RELATED WORK
Data mining has been the focus of malware researchers to

detect unknown malwares. A number of classifiers have been
built and shown this way have very high accuracy rates [4].
Most of these classifiers use system calls as their primary
feature like [11]. According to the tracing of system call,
some analysis tools and sandboxing environments such as
CWSandbox [5] could be used to trace windows API.
Anubis [6] could trace native API and windows API.

All approaches mentioned above use either in-guest
environment or whole-system emulation, which are
vulnerable to be attacked. A more efficient solution, which is
called out-of-guest approach was proposed. Out-of-guest
approach places analysis tool and target program into
different operating systems. This approach has a range of
advantages and has been used in a number of solutions.
Livewire [7] uses this approach to pull the intrusion
detection system out of the host for greater attack resistance.
Ether [8] uses virtual machine technology to improve
security and accountability of the analysis systems.

2009 International Conference on Management of e-Commerce and e-Government

978-0-7695-3778-8/09 $26.00 © 2009 IEEE

DOI 10.1109/ICMeCG.2009.114

475

2009 International Conference on Management of e-Commerce and e-Government

978-0-7695-3778-8/09 $26.00 © 2009 IEEE

DOI 10.1109/ICMeCG.2009.114

473

III. SYSTEM CALL TRACING SYSTEM
In this section, we propose our system on tracing

malware behavior based on the full virtualization. Firstly, we
introduce full virtualization with Intel VT, then we give the
details of our system architecture and how it can monitor
system call at real-time. At last we will introduce the
advantage of our trace system.

Figure 1. System architecture.

A. Full virtualization with Xen and Intel-VT
Full virtualization can provide a complete simulation of

the underlying hardware. Unlike para-virtualized approach
which has to modify the OS kernel to run in para-virtual
machine. To implement full virtualization on x86 platform,
Intel launched hardware virtualization extensions to augment
the x86 instruction set (Intel-VT).

We extended the Xen as our virtual environment which
consists of Xen hypervisor and domains. The Xen hypervisor
is worked as VMM that allows the hardware resources to be
virtualized and dynamically shared between various virtual
machines(VMs). These VMs belong to different domains.
One domain which has special privilege called Domain0,
Dmain0 is a modified Linux kernel (also called HostOS). It
has special rights to access physical I/O resources and
interacts with other VMs which called DomainU (GuestOS).
As shown in Figure 1 our system use Xenlinux as HostOS
and let an unmodified WinXP as a GuestOS which is
responsible for running the target malware. We divide the
target program and system call trace modules into different
system since Xen can ensure the transparency between
HostOS and GuestOS, they cannot impact the execution of
each other. And the most important is that target malware
cannot feel the existence of analysis environment, so some
anti-virtualization and anti-hooking technologies will lose
their effectiveness.

Intel-VT has two forms of CPU operation: VMX root
operation and VMX non- root operation. It also defines two
transitions: a transition from VMX root operation to VMX
non-root operation is called VM entry, and another transition
from VMX non-root operation to VMX root operation is
called VM exit. Xen Hypervisor runs in VMX root mode and
GuestOS runs in non-root mode. Some important system
events which include context switch, page-fault, and
hardware interruption in GuestOS will cause VM exit. We
can set VMCS to manage VM transition and capture the
process status change and system call events. Next section
we will details the monitoring of system call execution.

B. Monitoring system call execution
Our system call tracer consists of two components: the

user-space component and the kernel-space monitor
component. User-space control component assigns a process
in HostOS application level. Kernel-space monitor
component identify the process and realize the system call
interception in Xen hypervisor.

In order to identify the process, we must set VMCS in the
VMM layer. VMCS manages processor behavior in VMX
non-root operations when VM entries and VM exits happen.
The VMCS is logically divided into sections, two of which
are the guest-state area and the host-state area. The guest-
state area contains the state of the virtual CPU associated
with the GuestOS. It includes fields corresponding to
registers that manage processor operation, such as the
segment registers, CR3. The CR3 register contains the value
of page directory pointer of current process. The change of
process running in the GuestOS will result in the value
change of CR3. So we custom the VMCS to gain control on
every context switch (mov cr3) which causes a VM exit
when the page directory entry pointer is accessed in the
GuestOS. We also use virtual machine introspection to get
the process name and our process identify component will
compare with an assigned process. If the process matches the
target process specified by user-space control component,
Tracing is started.

In order to achieve the goal of system call interception,
our system exploits the x86 system call entry mechanism to
inform the capture component that system call was invoked
by the assigned process. When a system call is being
invoked, SYSENTER instruction executes. The behavior of
SYSENTER is configured with the value in the model
specific register (MSR). When SYSENTER is executed,
values in MSR are loaded in several registers, including the
stack pointer to the kernel mode stack and instruction pointer
to the value in SYSENTER_EIP_MSR register.
SYSENTER_EIP_MSR contains the address which
dedicates where to jump when the SYSENTER executed.
We set the value of SYSENTER_EIP_MSR to a chosen
value which is not present and stored the original value.
When a SYSENTER executes, a page fault will be raised and
VM exit will occur. The capture component capture the page
fault and get the information of current system call which
will then be transferred to the communication component.
The communication component use event channel and
shared memory to transfer the information to the system call

476474

recorder. We must reset the stored value into
SYSENTER_EIP_MSR. Execution of target process
resumes as if SYSENTER jumped directly to the expected
address, so interception can be transparent to the malware
application and prevent malware from avoiding monitor.

Compared with other tools, our system fulfills the
integrity and robust requirements of malware analysis system.
By placing tracer and target malware in different system,
malware cannot affect the environment which the analyzer
resides in. Even if malware gains root access or completely
damage guest operating system, the analysis software and the
tracer date won't be affected. This will ensure that the
analysis system has strong robustness. In VT-architecture,
GuestOS’s processor state will be saved in VMCS when VM
exits occurs, And VM entry will load them back from VMCS.
Each action of target process will cause a change of GuestOS
CPU state. We can set the VMCS to manage which state will
cause a VM exit. When expected events cause vm exit, all
the CPU change information will be reflected in the value
change of VMCS. We monitor VMCS so when the target
process is about to run or it interact with the GuestOS, our
tool does not miss any behavior. This will guarantee our
analysis system have high integrity.

IV. SVM MODEL AND EXPERIMENT

A. Data preprocess and SVM construction
Through our system call tracing system, we will get a

large data set of system call sequences. In this section, we’ll
use SVM to process this dataset and detect unknown
executables. First we assign each system call an index value,
for example ‘116’ assign to system call “NtOpenFile”
showing as Figure 2 (a). We save the numerical sequence
correspond to each system call in a data file.

Figure 2. (a) A part of the system call sequence (b) short API call

traces slide with k=5.

In order to use the SVM model, we slide a window of
size k across the trace sequences, recording each unique
sequence of length k that is encountered. We use the short k-
length system call sequence to generate the feature vector for
SVM. For example, if k=5, one get the unique sequences
show detail as Figure 2 (b). Short sequence of system calls
represents the order of system call by executing process.
Wenke Lee [12] found that one cannot get useful message
from system call sequence when window size larger than 30.
Take conditional entropy and computational consumption
into consideration, we adapt 8 as the value of short sequence
length k in our paper. Short sequence can extracted from

malware and benign samples by scanning the history of
system call with k length slide window. We saved these short
system call sequence in feature database. We adopt the
zhang's distance algorithm [11] with threshold 4 to reduce
number of Short sequences. Then we adopt the attributes
reduction of Information-Gain [9] on the feature sets. We
calculate the Information Gain of each feature:

(0,1) { }

(,)
() - (,) log

() ()
j j

j
j

v c c j

p v C
IG j P v C

p v p C∈ ∈
= ∑ ∑ . (1)

Where ()IG j denote the Information Gain value of
feature j , C represents one class in{ }iC , { }iC have binary
value which means malware or benign sample in our paper.

(,)jp v C denotes the probability of feature j with the value
of jv in class C . ()jp v denotes the probability of feature
j equal jv in all training sets. ()p C denotes the probability

of class C in all training sets. At last we select 1600 features
which have the lower IG value and save in the feature
database D . After Data preprocess we get system call
sequence X of each executable program, then we use 8-
length windows to slide sequence X and generate short
system call sequence t . We compare every short system call
sequence t with the feature database D . If t exists in the
feature database D , we set the number of occurrences of t
in X as the value of corresponding feature vector. Through
this way we can generate a feature vector for every sample.
Then we can use the well-established method of Support
Vector Machines (SVM) to train and classify the sample set.

B. Experiment result
During the experiment, we use the software LIBSVM.

To evaluate our system we were interested in several
quantities:

• False Negative (FN): the ratio of malicious
executable examples classified as benign.

• False Positive (FP): the ratio of benign programs
classified as malicious executables.

After comparison with other kernel Function, we choose
Radial Basic Function in our SVM model:

2

2

|| ||(,) ex p ()x yK x y
σ
−= − . (2)

There are two parameters in equation (2) while using RBF
kernel: 21 / σ and C . It is not known beforehand which C
and 21 / σ are the best for one problem. Consequently some
kind of parameter search must be done. So we try two
variable group value of (21 / σ , C) to test the classification
performance of SVM.

In our experiments, the data set consists of 1813 samples
split into 1226 malicious and 587 benign executables.
Malicious executables are provided by ANTIY laboratory.
Benign executables are collected from the Internet and
system directory, for benign executables, they are firstly

477475

scanned by Kaspersky and Rising to eliminate hidden
malicious ones. We use 30% of samples as testing data set
and 70% as training data set. The detail experiment result
shows in Table 1.

TABLE 1. EXPERIMENTAL RESULT OF DETECTION SYSTEM

C 21 / σ FN(%) FP(%)

50 10 5.46 6.13

100 1 6.53 7.32

200 0.5 7.78 8.43

In order to verify the useful and robust of our system call

tracing toward the different malware samples in the wild. We
compare the system call trace report between Argus [10],
CWSandbox [5], Anubis [6] which are popular system call
tools over the world. We submit the same 1250 malware
samples for these tools, and the return number of Useful
tracing result show in Table 2. We define the “Useful”
means that the trace result must contain at least one actual
interaction with operator system. The result of this compare
also show that the malware author keep on studying the new
behavior analysis tool and try to find new way to anti-
analysis. Our system traces 1226 malware samples correctly.
It performs best and show that full virtualization is a
effective technology on the tracing of malware behavior.

TABLE 2. COMPARE RESULT OF SYSTEM CALL TRACING SYSTEM

Trace
platform Argus CWSandbox Anubis Our

system
number 534 788 1125 1226

Useful rate 43 % 63 % 90 % 98%

V. CONCLUSION AND FUTURE WORK
In this paper we proposed our novel system call tracing

system based on full virtualization. We also show the strong
resilience of our system call tracing system through the
comparison with other trace tools. The result of our
experiment based SVM has shown that our method can
detect malware with high accuracy.

In our trace system we only get system call sequence and
ignore system call parameter such as which file is created
with NTCreateFile. This issue must be met in the future
work.

REFERENCES
[1] J. Xu, A.H. Sung, P. Chavez, S. Mukkamala, "Polymorphic malicious

executable scanner by API sequence analysis" in 4th International
Conference on Hybrid Intelligent Systems (HIS), 2004, pp. 378–383

[2] VALSMITH, AND QUIST, D. Hacking Malware: Offense is the new
Defense. Defcon 14, August
2006.www.offensivecomputing.net/dc14.

[3] RUTKOWSKA, J. Red Pill: Detect VMM using (almost) One CPU
Instruction, November 2004.
http://invisiblethings.org/papers/redpill.html.

[4] M. Schultz, E. Eskin, E. Zadok, and S. Stolfo. Data mining methods
for detection of new malicious executables. In Proceedings of the
IEEE Symposium on Security and Privacy, pages 38{49, Los
Alamitos, CA, 2001. IEEE Press.

[5] C.Willems, T.Holz, and F.Freiling. Toward Automated Dynamic
Malware Analysis Using CWSandbox. IEEE Security and Privacy,
2007, 5(2):32-39.

[6] U.Bayer, C.Kruegel, and E.Kirda. TTanalyze: A Tool for Analyzing
Malware. In 15th Annual Conference of the European Institute for
Computer Antivirus Research, Hamburg, Germany, 2006: 180–192.

[7] T.Garfinkel, and M.Rosenblum. A Virtual Machine Introspection
Based Architecture for Intrusion Detection. In Proceedings of the
10th Network and Distributed Systems Security Symposium, San
Diego, USA, 2003: 191-206.

[8] A.Dinaburg and P.Royal, Ether: Malware Analysis via Hardware
Virtualization Extensions. In 15th ACM Conference on Computer
and Communications Security, Alexandria, Virginia, USA, 2008.

[9] J. Han, M. Kamber, Data Mining : Concepts and Techniques, Morgan
Kaufmann, August 2000

[10] Yongtao Hu Unknown Malicious Executables Detection Based on
Run-Time Behavior In Fuzzy Systems and Knowledge Discovery,
2008 pp. 391-395.

[11] Zhang, B; Yin, J; Hao, J; Zhang, D; Wang, S. Using Support
Vector Machine to Detect Unknown Computer Viruses,
International Journal of Computational Intelligence Research, Vol. 2,
No. 1, 2006, pp. 100 – 104

[12] Lee,W., Dong,X.: Information-Theoretic measures for anomaly
detection. In: Needham,R., Abadi M, (eds):Proceedings of the 2001
IEEE Symposium on Security and Privacy. Oakland, CA: IEEE
Computer Society Press (2001)130-143.

478476

