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Abstract—Malware has become the centerpiece of security 
threats on the e-commercial business. The focus of malware 
research is shifting from using signature patterns to identifying 
the malicious behavior patterns. Many researcher extract 
behavior pattern from system call sequences to identify 
malware from benign programs with data mining techniques. 
Most system call tracing tools must run alongside the malware 
in the same system environment and could be easily detected 
by malware. In this paper, we propose a new system calls 
tracing system based on the full virtualization via Intel-VT 
technology. Malicious samples are running in a GuestOS and 
they can not detect the existence of system call tracing tool 
running in the HostOS. We collect a system call trace data set 
from 1226 malicious and 587 benign executables. An 
experiment based on the SVM model shows that the proposed 
method can detect malware with strong resilience and high 
accuracy. 

Keywords-malware; full virtualization; native API sequence; 
SVM 

I.  INTRODUCTION 
A Malware are computer programs which do damage or 

inconvenience to computer users. Security threat posed by 
malware such as viruses, worms, trojan horses, rootkit are 
becoming more serious. Traditional signature-based 
detection performs poorly especially malware author employ 
polymorphism and metamorphism methods to frustrate 
analysis. Other malware research turns to the analysis based 
on malware behavior, because no matter the disguise, 
malware will behave badly. One technique for behavior 
analysis is using data mining techniques to automatically 
extract behavior pattern from malware and benign programs. 
Researcher trace the sequence of system calls as the program 
behavioral characteristics, because system call is the only 
way for a program to interact with the operating system, it’s 
natural place to intercept a program and perform monitoring 
[1].  

Traditional tools for obtaining system calls include 
disassemblers, debuggers and hooking system calls in a 
dynamic black box. These tools are vulnerable to dynamic 
code translation and debugger fingerprinting [2]. Dynamic 
hooking tools rely on monitoring a program once it is 
running in a virtual machine (VM) to isolate and roll back 
the system when damage happens. Unfortunately, malware 
authors are using anti-virtualization [3] to evade detection. 
When the malware detects it is running inside a VM, it will 

often exit or behave differently to fool analyzers and conceal 
its intentions. 

In this paper, we design a system call tracing system 
based on full virtualization via Intel VT. We place trace 
program running in HostOS and target program running in 
GusetOS, trace tool can get system call events of GuestOS 
through the virtual machine monitor (VMM) and virtual 
machine control structure (VMCS). We capture special VT-
transition to identify the process and get the sequence of 
system calls at real-time.  

In summary, this paper makes contributions as follows:  
• We design a robust system call tracing system based 

on full virtualization via Intel VT. The trace system 
could be transparent to the malware application. 

• We use SVM to extract the various features from the 
system call sequences of malware and benign 
programs, and then construct a model for malware 
detection. 

The rest of this paper is organized as follows: Section 2 
describes the related work. Section 3 describes our system 
call trace system. Section 4 details the construction of SVM 
model and the experiment results. Section 5 concludes this 
paper and gives the future work. 

II. RELATED WORK 
Data mining has been the focus of malware researchers to 

detect unknown malwares. A number of classifiers have been 
built and shown this way have very high accuracy rates [4]. 
Most of these classifiers use system calls as their primary 
feature like [11]. According to the tracing of system call, 
some analysis tools and sandboxing environments such as 
CWSandbox [5] could be used to trace windows API. 
Anubis [6] could trace native API and windows API. 

All approaches mentioned above use either in-guest 
environment or whole-system emulation, which are 
vulnerable to be attacked. A more efficient solution, which is 
called out-of-guest approach was proposed. Out-of-guest 
approach places analysis tool and target program into 
different operating systems. This approach has a range of 
advantages and has been used in a number of solutions. 
Livewire [7] uses this approach to pull the intrusion 
detection system out of the host for greater attack resistance. 
Ether [8] uses virtual machine technology to improve 
security and accountability of the analysis systems. 
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III. SYSTEM CALL TRACING SYSTEM 
In this section, we propose our system on tracing 

malware behavior based on the full virtualization. Firstly, we 
introduce full virtualization with Intel VT, then we give the 
details of our system architecture and how it can monitor 
system call at real-time. At last we will introduce the 
advantage of our trace system. 

 

 
Figure 1.  System architecture. 

A. Full virtualization with Xen and Intel-VT 
Full virtualization can provide a complete simulation of 

the underlying hardware. Unlike para-virtualized approach 
which has to modify the OS kernel to run in para-virtual 
machine. To implement full virtualization on x86 platform, 
Intel launched hardware virtualization extensions to augment 
the x86 instruction set (Intel-VT).  

We extended the Xen as our virtual environment which 
consists of Xen hypervisor and domains. The Xen hypervisor 
is worked as VMM that allows the hardware resources to be 
virtualized and dynamically shared between various virtual 
machines(VMs). These VMs belong to different domains. 
One domain which has special privilege called Domain0, 
Dmain0 is a modified Linux kernel (also called HostOS). It 
has special rights to access physical I/O resources and 
interacts with other VMs which called DomainU (GuestOS). 
As shown in Figure 1 our system use Xenlinux as HostOS 
and let an unmodified WinXP as a GuestOS which is 
responsible for running the target malware. We divide the 
target program and system call trace modules into different 
system since Xen can ensure the transparency between 
HostOS and GuestOS, they cannot impact the execution of 
each other. And the most important is that target malware 
cannot feel the existence of analysis environment, so some 
anti-virtualization and anti-hooking technologies will lose 
their effectiveness. 

Intel-VT has two forms of CPU operation: VMX root 
operation and VMX non- root operation. It also defines two 
transitions: a transition from VMX root operation to VMX 
non-root operation is called VM entry, and another transition 
from VMX non-root operation to VMX root operation is 
called VM exit. Xen Hypervisor runs in VMX root mode and 
GuestOS runs in non-root mode. Some important system 
events which include context switch, page-fault, and 
hardware interruption in GuestOS will cause VM exit. We 
can set VMCS to manage VM transition and capture the 
process status change and system call events. Next section 
we will details the monitoring of system call execution. 

B. Monitoring system call execution 
Our system call tracer consists of two components: the 

user-space component and the kernel-space monitor 
component. User-space control component assigns a process 
in HostOS application level. Kernel-space monitor 
component identify the process and realize the system call 
interception in  Xen hypervisor. 

In order to identify the process, we must set VMCS in the 
VMM layer. VMCS manages processor behavior in VMX 
non-root operations when VM entries and VM exits happen. 
The VMCS is logically divided into sections, two of which 
are the guest-state area and the host-state area. The guest-
state area contains the state of the virtual CPU associated 
with the GuestOS. It includes fields corresponding to 
registers that manage processor operation, such as the 
segment registers, CR3. The CR3 register contains the value 
of page directory pointer of current process. The change of 
process running in the GuestOS will result in the value 
change of CR3. So we custom the VMCS to gain control on 
every context switch (mov cr3) which causes a VM exit 
when the page directory entry pointer is accessed in the 
GuestOS. We also use virtual machine introspection to get 
the process name and our process identify component will 
compare with an assigned process. If the process matches the 
target process specified by user-space control component, 
Tracing is started.  

In order to achieve the goal of system call interception, 
our system exploits the x86 system call entry mechanism to 
inform the capture component that system call was invoked 
by the assigned process. When a system call is being 
invoked, SYSENTER instruction executes. The behavior of 
SYSENTER is configured with the value in the model 
specific register (MSR). When SYSENTER is executed, 
values in MSR are loaded in several registers, including the 
stack pointer to the kernel mode stack and instruction pointer 
to the value in SYSENTER_EIP_MSR register. 
SYSENTER_EIP_MSR contains the address which 
dedicates where to jump when the SYSENTER executed. 
We set the value of SYSENTER_EIP_MSR to a chosen 
value which is not present and stored the original value. 
When a SYSENTER executes, a page fault will be raised and 
VM exit will occur. The capture component capture the page 
fault and get the information of current system call which 
will then be transferred to the communication component. 
The communication component use event channel and 
shared memory to transfer the information to the system call 
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recorder.  We must reset the stored value into 
SYSENTER_EIP_MSR. Execution of target process 
resumes as if SYSENTER jumped directly to the expected 
address, so interception can be transparent to the malware 
application and prevent malware from avoiding monitor. 

Compared with other tools, our system fulfills the 
integrity and robust requirements of malware analysis system. 
By placing tracer and target malware in different system, 
malware cannot affect the environment which the analyzer 
resides in. Even if malware gains root access or completely 
damage guest operating system, the analysis software and the 
tracer date won't be affected. This will ensure that the 
analysis system has strong robustness. In VT-architecture, 
GuestOS’s processor state will be saved in VMCS when VM 
exits occurs, And VM entry will load them back from VMCS. 
Each action of target process will cause a change of GuestOS 
CPU state. We can set the VMCS to manage which state will 
cause a VM exit. When expected events cause vm exit, all 
the CPU change information will be reflected in the value 
change of VMCS. We monitor VMCS so when the target 
process is about to run or it interact with the GuestOS, our 
tool does not miss any behavior. This will guarantee our 
analysis system have high integrity. 

IV. SVM MODEL AND EXPERIMENT 

A. Data preprocess and SVM construction 
Through our system call tracing system, we will get a 

large data set of system call sequences. In this section, we’ll 
use SVM to process this dataset and detect unknown 
executables. First we assign each system call an index value, 
for example ‘116’ assign to system call “NtOpenFile” 
showing as Figure 2 (a). We save the numerical sequence 
correspond to each system call in a data file. 

 

 
Figure 2.  (a)  A part of the system call sequence   (b) short API call 

traces slide  with k=5. 

In order to use the SVM model, we slide a window of 
size k across the trace sequences, recording each unique 
sequence of length k that is encountered. We use the short k-
length system call sequence to generate the feature vector for 
SVM. For example, if k=5, one get the unique sequences 
show detail as Figure 2 (b). Short sequence of system calls 
represents the order of system call by executing process. 
Wenke Lee [12] found that one cannot get useful message 
from system call sequence when window size larger than 30. 
Take conditional entropy and computational consumption 
into consideration, we adapt 8 as the value of short sequence 
length k in our paper. Short sequence can extracted from 

malware and benign samples by scanning the history of 
system call with k length slide window. We saved these short 
system call sequence in feature database. We adopt the 
zhang's distance algorithm [11] with threshold 4 to reduce 
number of Short sequences. Then we adopt the attributes 
reduction of Information-Gain [9] on the feature sets. We 
calculate the Information Gain of each feature: 

(0,1) { }

( , )
( ) - ( , ) log

( ) ( )
j j

j
j

v c c j

p v C
IG j P v C

p v p C∈ ∈
= ∑ ∑ .    (1) 

Where ( )IG j  denote the Information Gain value of 
feature j , C represents one class in{ }iC , { }iC have binary 
value which means malware or benign sample in our paper. 

( , )jp v C denotes the probability of  feature j  with the value 
of jv  in class C .  ( )jp v  denotes the probability of  feature   
j equal jv  in all training sets. ( )p C  denotes the probability 

of class C  in all training sets. At last we select 1600 features 
which have the lower IG  value and save in the feature 
database D . After Data preprocess we get system call 
sequence X  of each executable program, then we use 8-
length windows to slide sequence X  and generate short 
system call sequence t . We compare every short system call 
sequence t  with the feature database D . If t  exists in the 
feature database D , we set the number of occurrences of t  
in X  as the value of corresponding feature vector. Through 
this way we can generate a feature vector for every sample. 
Then we can use the well-established method of Support 
Vector Machines (SVM) to train and classify the sample set. 

B. Experiment result 
During the experiment, we use the software LIBSVM. 

To evaluate our system we were interested in several 
quantities: 

• False Negative (FN): the ratio of malicious 
executable examples classified as benign. 

• False Positive (FP): the ratio of benign programs 
classified as malicious executables. 

After comparison with other kernel Function, we choose 
Radial Basic Function in our SVM model: 

2

2

|| ||( , ) ex p ( )x yK x y
σ
−= − .    (2) 

There are two parameters in equation (2) while using RBF 
kernel:  21 / σ  and C  . It is not known beforehand which C  
and 21 / σ are the best for one problem. Consequently some 
kind of parameter search must be done. So we try two 
variable group value of ( 21 / σ , C ) to test the classification 
performance of SVM. 

In our experiments, the data set consists of 1813 samples 
split into 1226 malicious and 587 benign executables. 
Malicious executables are provided by ANTIY laboratory. 
Benign executables are collected from the Internet and 
system directory, for benign executables, they are firstly 
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scanned by Kaspersky and Rising to eliminate hidden 
malicious ones. We use 30% of samples as testing data set 
and 70% as training data set. The detail experiment result 
shows in Table 1. 

TABLE 1.  EXPERIMENTAL RESULT OF DETECTION SYSTEM 

C  21 / σ  FN(%) FP(%) 

50 10 5.46 6.13 

100 1 6.53 7.32 

200 0.5 7.78 8.43 

 
In order to verify the useful and robust of our system call 

tracing toward the different malware samples in the wild. We 
compare the system call trace report between Argus [10], 
CWSandbox [5], Anubis [6] which are popular system call 
tools over the world. We submit the same 1250 malware 
samples for these tools, and the return number of Useful 
tracing result show in Table 2. We define the “Useful” 
means that the trace result must contain at least one actual 
interaction with operator system. The result of this compare 
also show that the malware author keep on studying the new 
behavior analysis tool and try to find new way to anti-
analysis. Our system traces 1226 malware samples correctly. 
It performs best and show that full virtualization is a 
effective technology on the tracing of malware behavior. 

TABLE 2.  COMPARE RESULT OF SYSTEM CALL TRACING SYSTEM 

Trace  
platform Argus CWSandbox Anubis Our 

system 
number 534 788 1125 1226 

Useful rate 43 % 63 % 90 % 98% 

V. CONCLUSION AND FUTURE WORK 
In this paper we proposed our novel system call tracing 

system based on full virtualization. We also show the strong 
resilience of our system call tracing system through the 
comparison with other trace tools. The result of our 
experiment based SVM has shown that our method can 
detect malware with high accuracy. 

In our trace system we only get system call sequence and 
ignore system call parameter such as which file is created 
with NTCreateFile. This issue must be met in the future 
work. 
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