
 Validation Algorithms Based on Content Characters 
and Internal Structure: The PDF File Carving Method

Mo Chen1 Ning Zheng2 Ming Xu3 Yongjian Lou4 Xia Wang5  
College of Computer, Hangzhou Dianzi University 

Hangzhou, 310018, China 
mchen@stu.hdu.edu.cn, nzheng@hdu.edu.cn, mxu@hdu.edu.cn, louyjhz@hdu.edu.cn, annewang@stu.hdu.edu.cn 

 
 

Abstract—This paper presents a new carving method for 
automatically and effectively carving PDF files from an 
unstructured digital forensic image. The carving method has five 
validation algorithms based on the content characters and the 
internal structure of PDF files. These validation algorithms 
include header/file length/maximal offset of objects/footer 
validation, internal structure validation, entropy difference 
validation, zlib/deflate decompression validation and character 
table validation. Effectively reassembling PDF file fragments 
including out-of-order fragments, exactly carving PDF files 
without any manual intervention, lower “false positives” are the 
advantage of this method. The PDF file carving method and 
other carving applications are illustrated over real world data 
using the DFRWS 2007 carving challenge dataset. The results 
show that this method is better than other’s. 

Keywords- file carving; PDF validation; content characters; 
internal structure; DFRWS 2007 carving challenge dataset  

I. INTRODUCTION 
File carving is a powerful technique, often used to recover 

files from unstructured original disk images. It carves files 
based on their content, rather than using metadata that points to 
the content [1]. In forensics, file carving can identify and 
recover interesting files from raw, deleted or damaged file 
system, memory, and swap space data obtaining from live 
information. File carving has three steps: Firstly, obtaining an 
original disk image from an investigative target; secondly, 
identifying whether the files are intact or not, dealing with the 
fragmented files (all fragments present, but non-contiguous) 
and the broken files (missing pieces); finally, examining 
validities of the files and copying out the finished files from the 
image. Nowadays, most file carving techniques share three 
limitations: Firstly, they are difficult of reassembling the 
fragments of the fragmented files; secondly, their results have 
high “false positives” (files were presented as intact data, but 
which in fact contained invalid data and could not be 
displayed); thirdly, they can not carve the broken files. 

The paper significantly presents understanding and 
improving PDF file carving in three ways: Firstly, it introduces 
a detailed analysis of the PDF file format. Secondly, it presents 
a new PDF file carving method. The method includes five PDF 
validation algorithms based on the content characters and the 
internal structure of PDF files. Thirdly, it discusses the results 
of applying the PDF file carving method and several existing 

file carving applications to the DFRWS 2007 carving challenge 
[2]. 

II. RELATED WORK 
Header/footer carving was the classical file carving 

technique. It extracted all data between possible file header and 
file footer. In 2005, Richard designed a frugal, high 
performance file carver, Scalpel [3]; Mikus researched many 
general file formats, introduced example internal structure of 
files, and extended Foremost [4]. PhotoRec [5] is frequently 
used to recover destructed file systems or data, can carve more 
intact files than others. But above carvers can not exactly carve 
all files, especially the fragmented and broken files. And their 
carving results have high “false positives”. In 2006, Metz 
designed a carving tool, Revit [6, 7]. Revit identified a block of 
raw data whether belonged to a file by “file definition states”. 
It recognized the fragments of the file based on entropy, file 
characteristics, etc. Revit also could not exactly recovery the 
fragmented and broken files. In 2007, Cohen based his work on 
a theory of fragments and file mapping [8]. His PDF carving 
process consists of three steps: Firstly, indexing all objects and 
cross-reference tables from the image; secondly, merging 
together cross-reference tables belonging to the same file; 
thirdly, adding identified points to the object, then parsing the 
result and reparsing the ambiguous region test points. Cohen’s 
carving result had low “false positives”, but it needed 
overmuch manual intervention, generated much redundant 
data, stopped consecutively when error could not be solved. 

III. PDF FORMAT  
A PDF file is basically a binary file which also uses ASCII 

tags as delimiters to describe the header, trailer, data structures 
and special content characters [4]. For efficient random access, 
a canonical PDF file initially consists of four elements (Figure 
1(a)). PDF specifies a particular file organization, “Linearized 
PDF”, its structure shows in figure 1(b). And all tags in this 
paper are stored in ASCII. 

“%PDF” is PDF file header, and “%%EOF” is PDF file 
footer (Figure 1(a)).  

The body of a PDF file consists of a sequence of indirect 
objects representing the contents of a document [9]. A labeled 
object is called an indirect object, and has a unique “object 
identifier”. The object identifier has two parts: a positive 
integer “object number” and a non-negative integer “generation 

2008 International Symposium on Information Science and Engieering

978-0-7695-3494-7/08 $25.00 © 2008 IEEE

DOI 10.1109/ISISE.2008.209

168



number”. The value of the object bracketed between the 
keywords “obj” and “endobj” followed the identifier (Figure 1 
(a)). Following the header, the first object of the linearized 
PDF file must be an indirect dictionary object, linearization 
parameter dictionary. The value of the parameter “L” shows 
the actual length of the entire PDF file in bytes.  

%PDF
……

          16 0 obj
……

          endobj
……

            xref

                  %%EOF

Header

Trailer

Cross-reference
 table

Body

          
                             (a)                                              (b) 

Figure 1.  (a) is the initial structure of the PDF file, (b) is the structure of the 
linearized PDF file 

The cross-reference table contains information that permits 
random access to indirect objects within the file so that the 
entire file need not be read to locate any particular object [9]. 
The table comprises one or more cross-reference sections. Each 
cross-reference section begins with a line containing the 
keyword “xref” (Figure 1(a)). Following this line are one or 
more cross-reference subsections. Each subsection begins with 
a line containing two numbers separated by a space: the object 
number of the first object in this subsection and the number of 
entries in the subsection [9]. Following this line are the cross-
reference entries themselves, one per line. Each entry is exactly 
20 bytes long, including the end-of-line marker (2-character). 
The eighteenth byte of each entry is the keyword “n” or “f”, 
distinguishing an entry is in-use or free. If an entry is in-use, 
then the first 10 bytes denote the 10-digit byte offset of the 
object, otherwise the first 10 bytes denote the 10-digit object 
number of the next free object. And 5 bytes follow the first 
space denote 5-digit generation number. 

The trailer of a PDF file has a “trailer dictionary”, 
consisting of the keywords “Size” and “Prev”. The value of the 
keyword “Size” in the trailer dictionary denotes the total 
number of entries in the PDF file’s cross-reference table. The 
keyword “Prev”of the dictionary presents only if the file has 
more than one cross-reference section. Its value denotes the 
byte offset from the beginning of the file to the beginning of 
the previous cross-reference section. 

IV. PDF FILE CARVING METHOD  
Our PDF file carving method consists of five validation 

algorithms, based on the content characters and the internal 
structure of PDF files. The carving process shows in figure2: 

• The disc image is first scanned by header/file 
length/maximal offset of objects/footer validation. The 
validation distinguishes whether the PDF file is 
linearized or not, then confirms the intact PDF file. The 
unconfirmed PDF files are tagged as the default 
fragmented PDF files. 

• Internal structure validation searches the fragments 
belonging to the default fragmented PDF files, 

ascertains the files are broken or fragmented, identifies 
whether the object is intact or not, calculates the 
number of the fragments, finally confirms the exact or 
temporary boundaries of the fragments. 

• The temporary boundaries of the fragments should be 
farther confirmed by surplus validation algorithms. If 
surplus validation can not confirm the exact 
boundaries, the temporary boundaries will be the final 
boundaries. 

• The confirmed PDF files are copied out from the disc 
image. 

Header/File length/footer 
validation

Header/maximal offset of 
objects/footer validation

Internal structure 
validation

Entropy difference 
validation

Validation with 
zlib/deflate decompression

Character table 
validation

Header/file length/maximal offset 
of objects/footer validation

Disk image

Linearized 
PDF files

Non-linearized 
PDF files

Intact PDF 
files

Default Fragmented 
PDF files

The fragments   
have temporary 

boundaries

Confirmed 
fragmented & 

broken PDF files  

Unconfirmed 
fragmented & 

brokenPDF files  

Confirmed 
fragmented 
& broken 
PDF files  

Fragmented & 
broken PDF files 
have temporary 

boundaries

Coping out the confirmed PDF files  
Figure 2.  The new PDF file carving process 

A. Header/file length/maximal offset of objects/footer 
validation 
Header/file length/maximal offset of objects/footer 

validation first seeks the PDF file’s header according to the 
keyword “%PDF”. Then it confirms whether the PDF file is 
linearized or not, according to the linearization parameter 
dictionary. The validation uses different techniques to deal with 
the linearized PDF file and non-linearized PDF file: 

• The linearized PDF file is dealt with header/file 
length/footer validation. This validation scans the 
linearization parameter dictionary of the linearized 
PDF file to seek the keyword “L”. The following 
equation will hold when it is found.  

lhf +=                                   (1.1) 
where f is the end of the PDF file, h is the start of the 
file header, l is the value of the keyword “L”. This 

169



validation scans the end area according to f. If the 
keyword “%%EOF” is found, the PDF file will be 
tagged as intact file, otherwise it will be tagged as 
default fragmented file.  

• The non-linearized PDF file is dealt with 
header/maximal offset of objects/footer validation. 
This validation firstly hypothesizes the tested PDF file 
is intact, so its cross-reference table is below the 
header. The validation scans the data following the 
header to seek its cross-reference table, calculates the 
maximal offset of objects in the cross-reference table. 
And the equation will hold. 

offMhobjM +=                          (1.2) 
where objM is the last object’s location of the PDF file 
in the image, h is the start of the file header, offM is the 
maximal offset of objects in its cross-reference table. 
The validation checks the last object’s location 
according to objM. If an object is found, the PDF file 
will be tagged as intact file, otherwise it will be tagged 
as default fragmented file. 

Reducing “false positives” is the advantage of header/file 
length/maximal offset of objects/footer validation. Because it 
exactly finds intact PDF files, can identifies many deceptive 
instances. For example, the linearized PDF file will not be 
tagged as intact when its file length has been changed because 
of fragments; the non-linearized PDF file will not be tagged as 
intact when its sectors were inserted, deleted or modified. 

B. Internal structure validation 
Internal structure validation consists of two parts: intact 

object validation and the number of fragments validation. Intact 
object validation confirms whether the object is intact or not. 
The number of fragments validation seeks the fragments of the 
PDF file, ascertains the file is broken or fragmented, calculates 
the number of the fragments, and confirms the temporary 
boundaries of the fragments. 

1) Intact object validation: The values of the offsets in the 
cross-reference table will not change when the file is 
fragmented (The paper hypothesizes the cross-reference table 
is not destroyed), so the margin of two contiguous offsets 
denotes the actual length of an object. Intact object validation 
firstly arranged the in-use entries in order, according to the 
offsets of the cross-reference table. Then the following 
equations confirm whether the tested object is intact or not. 

121 OffOffLen −=                                  (1.3) 

122 ToffToffLen −=                               (1.4) 

21 LenLen =                                            (1.5) 
where 1Len is the margin between two in-order contiguous 
offsets, 1Off is the offset of the tested object, 2Off is the offset 
of the next in-order contiguous object; 2Len is the length of 
the tested object, 1Toff is the location of the tested object in the 
PDF file, 2Toff is the location of the next contiguous object in 
the PDF file. If (1.5) can not hold, the tested object is 
confirmed as fragmented, otherwise is tagged as intact. 

2) The number of fragments validation: The validation 
based on intact object validation, the detailed process has three 
parts: 

a) Pretreatment: The linearized PDF file or the updated 
non-linerarized PDF file  has more than one cross-reference 
section, more than one keyword “Size”and keyword “Prev”. 
The value of the keyword “Size” in the main cross-reference 
section indicates the total number of entries. The validation 
merges together all cross-reference sections belonging to the 
same PDF file in the pretreatment. For example, we 
hypothesize a fragmented PDF file has two cross-reference 
sections, then the equations (1.6) and (1.7) will hold. 

21 xy =                                              (1.6) 

21 yyS +=                                        (1.7) 

where 1y is the number of entries in the first section, 2x is the 
object number of the first object in the second section, 2y is 
the number of entries in the second section, and S is the total 
number of entries in the cross-reference table. So if two cross-
reference sections hold the two equations, then the validation 
will confirm the two cross-reference sections belonging to the 
fragmented PDF file. 

b) Seeking and calculating fragments: The fragments of 
the PDF file (The paper hypothesizes the fragment is big 
enough) must have one or two fragmented object and some 
intact object. The validation firstly seeks the intact object 
below the PDF file header, if a tested object Oi is fragmented, 
the first fragment and the first fragmented object can be 
confirmed. The next objects Oi+1 and Oi+2 must be intact in the 
next fragment, so the validation uses the cross-reference table 
and intact object validation to find Oi+1 and Oi+2. It 
continuously tests the integrality of the following object until 
next fragmented object is found or all following objects are 
intact. If all following objects are intact, the next fragment can 
be confirmed as the last fragment, otherwise the following 
fragment should be continuously searched by the above theory. 
If the following fragment can not be confirmed, then the PDF 
file can be tagged as broken file. The number of the fragments 
in the PDF file can be confirmed according to (1.8). 

1+= fobjNfragN                                 (1.8) 
where fragN is the number of the fragments, fobjN is the 
number of the fragmented objects. 

c) Confirming temporary boundaries: The head and the 
foot of a fragment are calculated by (1.9) and (1.10). 

⎣ ⎦ 512*512/objFfragH =                                (1.9) 

⎣ ⎦ 512*)1512/( += objLfragF                       (1.10) 
where fragH is the head of the fragment, fragF is the foot of 
the fragment, objF is the first object in the fragment, objL is 
the last object in the fragment. fragH and fragF are the 
temporary boundaries of the fragment, need to be handled by 
surplus validations.  

C. Entropy difference validation 
Entropy is defined as a measure of randomness, or 

uncertainty, in a particular piece of information [10]. Claude E. 

170



Shannon defined entropy as the sum of: the probabilities of 
each state multiplied by the log to the base 2 of those 
probabilities [11]. Written in formal notation we have: 

∑
=

−=
n

i

ipipxH
1

2 )(log)()(                          (1.11) 

Some researchers used entropy values or entropy signature 
to identify different file types [6, 7, 12]. Luan [10] pointed out 
that the compressed or encrypted files had higher entropy 
values. 

The PDF file has large amount of compressed data for 
reducing file size. These compressed data always are binary 
data, so their entropy values generally are higher. If a 
fragmented object is a compressed stream, its entropy value or 
entropy signature can be used to seek the boundary of the 
compressed data. But entropy can’t exactly identify the 
fragments of the PDF file, for the entropy values of the 
different objects are different. So we design entropy difference 
validation to solve this problem. The equation is: 

|))(log)(())(log)((|)(
1

2
1

2 ∑∑
==

−−−=
n

j

m

i

jpjpipipxHD  

(j=i+1, n=m=256)                                 (1.12) 
where n is the number of the last 256 bytes in a sector, m is the 
number of the first 256 bytes in the next sector. The validation 
achieves good result when the entropy difference value equals 
to 0.8. 

D. Validating with zlib/deflate decompression 
“FlateDecode” is the most common filter in a PDF file 

decoding data that has been encoded “Flate” data compression 
method. The “Flate” method is based on the public-domain 
zlib/deflate compression method [9]. It is fully defined in 
Internet RFC 1950[13] and RFC 1951[14]. 

Validating with zlib/deflate decompression confirms 
whether the encoded “Flate” data are valid or not, by decoding 
the data of the fragmented object. The detailed process is: 

1) Extracting the “Flate” data of the fragmented stream in 
the first fragment, 1stream ; 

2) Extracting the “Flate” data of the fragmented stream in 
the second fragment, 2stream ; 

3) Initializing circular number c and it equals to 0; 
4) Calculating the number of the fragmented stream’s 

sectors, streamSN , and the equation shows in the following: 
512/)( 21 streamLstreamLobjLenstreamSN −−=    (1.13) 

where objLen is the length of the fragmented object, 

1streamL is the length of the 1stream , 2streamL is the length 
of the 2stream ; 

5) Connecting 1stream and 2stream to form the resultant 
data, stream , decompressing it; if success, the boundaries of 
two fragments are confirmed, going to 9), otherwise, going to 
6); 

6) 1stream subtracts the last sector, the head 
of 2stream augments one preceding contiguous sector, c adds 1; 

7) Judging whether c surpasse streamSN , if surpassing, 
going to 8), otherwise going to 5); 

8) Decompressing unsuccessful; 
9) The boundaries are confirmed by the locations of 

1stream and 2stream  

E. Character table validation 
Character table validation initially establishes PDF 

characters table (It is small and needs to test more dataset for 
adding more characters) for matching characters in the 
boundaries of the fragmented PDF file’s fragments. For 
example, if the letters “/BaseFont /JMODBM+H” appear as the 
last characters of a sector, the validation will know this belong 
to a font. For a font subset, the PostScript name of the font – 
value of the font’s “BaseFont” entry and the font description’s 
“FontName” entry – begins with a tag followed by a plus sign 
(+) [9]. The tag consists of exactly six uppercase letters, the 
choice of the letters is arbitrary, but different subsets in the 
same PDF file must have different tags [9]. The character table 
stores standard font names coming from Adobe font name 
reference table [15]. So if the letters “elveticaNeue-BoldCond” 
appear as the first characters of a sector, it is reasonable to 
assume two sectors are consecutive in the fragmented PDF file. 

V. RESULTS AND DISCUSSION  
This section discusses the experimental results of applying 

the new PDF file carving method and several existing file 
carving applications to the DFRWS 2007 carving challenge. 
We compare our method to Foremost [4], Revit [6, 7] and 
Cohen’s PDF file carving method [8]. 

The DFRWS 2007 challenge creates 89 different scenarios 
to test specific situations that might occur in a real file system. 
And the scenarios have four levels, based on the difficulty of 
recovering the files. This dataset has 1 intact PDF file, 6 two-
fragmented PDF file, 1 three-fragmented PDF file, 5 broken 
PDF file. It assumed that the discontinuities of files only occur 
on sector boundaries. 

Our experiments under Linux operating system and the 
material configuration is 2.66 GHz Pentium 4 with 512MB of 
RAM, 7200 rpm 40GB+120GB drive, operating system is 
Fedora 5 with 2.6.20 kernel. 

The comparison of four applications shows in table 1, 
where C denotes the successful rate of carving the intact PDF 
files, F denotes the successful rate of carving the fragmented 
PDF files according to the number of files. B denotes the 
successful rate of carving fragments of the broken PDF files 
according to the number of fragments. 

1) Carving time. Foremost is the fastest, only runs 
26.885s. Revit follows Foremost, runs 40.818s. The time of 
Cohen’s PDF file carving method can’t be exactly calculated, 
for it needs much manual interference and stops consecutively 
when error can not be solved. The paper only counts its right 
automatic carving time. The new PDF file carving method 
runs 2m6.202s.  

2) Carving result. The new PDF file carving method 
carves 8 PDF file and 5 fragments, makes different file 
directories to store them. Cohen’s PDF file carving method 

171



carves 19 PDF files. Each PDF file generates two file types 
(map, map.final), some PDF files have two or three same PDF 
files. So it has many data redundancies. Revit carves 2 PDF 
files. Foremost can only carve intact PDF file, so its result has 
one PDF file.  

3) Successful rate. The paper presents (14) is the formula 
of successful rate. 

%100*/)()( TnxCnxE =                     (1.14) 
where x indicates carving method, E(x) indicates successful 
rate, Cn(x) is  the number of the accurate carved PDF 
files/fragments, Tn is the total number of the PDF 
files/fragments in the dataset. The new PDF file carving 
method is the highest, not only exactly carves the intact and 
fragmented PDF files (their carving successful rates achieve 
100%), but also handles with the broken PDF files. Cohen’s 
PDF file carving method is the second. It works well on the 
intact and fragmented PDF files, recovers 6 fragmented PDF 
files (one of the 6 fragmented PDF files is not exact, needs 
Adobe PDF reader to recover), but it can not handle with the 
broken PDF files. Foremost exactly carves the intact PDF file. 
Revit is the worst, for its carved PDF files are partial data of 
the PDF files. 

VI. THE CARVING RESULTS OF FOUR APPLICATIONS 
Carving Method Time Carved Result Successful Rate

The new PDF file 
 carving method 2m6.202s 8 PDF files  

5 fragments 

C:100% 
F: 100% 
B: 25% 

Foremost 26.885s 1 PDF file C: 100% 
F/B: 0% 

Revit 40.818s 2 PDF files C: 0% 
F/B: 0% 

Cohen’s PDF file  
carving method >2m30.474s 19 PDF files 

C: 100% 
F: 85.7% 

B: 0% 

Taking one with another, we think that the new PDF 
carving method is more useful. It can identify whether PDF 
files are intact or not, successfully reassembles the fragments, 
accurately recovers PDF files without any manual intervention, 
has lower “false positives”. 

VI. CONCLUSION AND FUTURE WORK  
In this paper, we introduce the information about file 

carving and PDF format, presents a new PDF file carving 
method including five validation algorithms. They based on the 
content characters and the internal structure of PDF files. 

Finally, we discuss the carving experiments of different carving 
applications. The results show our carving method is better 
than others. 

Future works include three factors. The first factor is 
further development of the new PDF file carving method. It 
should be more tested, for improving its accuracy. The second 
factor is further research of other file types like ZIP, HTML 
and OLE etc. The third factor is that we will research more 
algorithms to help improving carving method. 

ACKNOWLEDGMENT 
Supported by the Natural Science Foundation of Zhejiang 

Province of China under Grant No.Y106176, and the science 
and technology search planned projects of Zhejiang Province 
of China under Grant No.2007C33058. 

 

REFERENCES 
[1] Simson L.Garfinkel,  “Carving contiguous and fragmented files with fast 
object validation”, Digital Investigation. Vol. 4, Supplement 1, pp. 2-12, 2007. 
[2] DFRWS, “Foresics challenge”  http://www.dfrws.org/, 2001. 
[3] Golden G. Richard Ⅲ , Vassil Roussev, “Scalpel: A frugal, high 
performance file carver”.  Proceedings of the 2005 Digital Forensic Research 
Workshop. New Orleans, LA, 2005.  
[4] Nicholas Mikus,  “An analysis of disc carving techniques”. Master’s 
thesis. Monterey: Naval Postgraduate School, 2005.  
[5] PhotoRec,  http://www.cgsecurity.org/wiki/PhotoRec , 2006.  
[6] Joachim Metz and Robert-Jan Mora, “Analysis of 2006 DFRWS forensic 
carving challenge”. http://sandbox.dfrws. org/2006/mora/, 2007.  
[7] Joachim Metz, Bas Kloet and Robert-Jan Mora. “Analysis of 2007 
DFRWS forensic carving challenge”. http://sandbox. dfrws.org/2007 /metz/, 
2007.  
[8] Michael Cohen, “Advanced carving techniques”. Digital Investigation. 
Vol.4, Issues 3-4, pp.119-12, 2007.  
[9] Adobe Systems Incorporated, “Portable document format version 1.7”.  
http://www.adobe.com., 2007. 
[10] Haiying Luan and Simon Mackey. “Entropy analysis”. 
http://polya.computing.dcu.ie/wiki/index.php/Entropy_Analysis, 2006. 
[11] Shannon, C. E, “A mathematical theory of communication”. Bell System 
Technical Journal. Vol 27, pp. 379-423,623-656, 1948. 
[12] Cor J. Veenman, “Statistical disk cluster classification for file carving”. 
proceedings of the Third International Symposium on Information Assurance 
and Security. Manchester, UK, 2007. 
[13] P. Deutsch and J-L. Gailly, “ZLIB compressed data format specification 
version 3.3”. RFC 1950. 
[14] P. Deutsch, “DEFLATE compressed data format specification version 
1.3”. RFC 1951. 
[15] Adobe Systems Incorporated “Adobe font name reference table”. 
http://www.adobe.com,1997. 

 

172


