
Unknown Malicious Executables Detection Based on Run-time Behavior

Yongtao Hu1, Liang Chen2, Ming Xu2, Ning Zheng2, Yanhua Guo2
tyhu@trimps.ac.cn mecury5460@163.com mxu@hdu.edu.cn

1. The Third Research Institute of the Ministry of Public Security
2. Hangzhou Dianzi University

Abstract

Traditional anti-virus scanner employs static features
to detect malicious executables. Unfortunately, this
content-based approach can be obfuscated by techniques
such as polymorphism and metamorphism. In this paper,
we propose a malicious executable detecting method
using 35-Dimension feature vector. Each dimension
stands for a malicious run-time behavior feature
represented by corresponding Win32 API calls and their
certain parameters. An automatic executable behavior
tracing system (Argus) is also implemented to dynamically
capture the features. Experiments are performed on a
data set of 8223 malicious and 2821 benign executables.
Training set is then used to generate detection model and
several testing groups are set up for classification.
Experiment result suggests that the method is efficient in
detecting previously unknown malicious executables
which have more than two behavior features captured.

1. Introduction

Malicious executables are computer programs which
do damage or inconvenience to computer users. Typical
examples include computer viruses, Trojan horses,
worms, spyware and adware [1].

Technologies used to detect malicious executables can
be separated into technical component and analytical
component [2].

A technical component: it provides data to be
analyzed by the analytical component. The data may be
file byte code, text strings and action of a malicious
executable running within the operating system.1

An analytical component: it acts as a decision-
making system. It makes a decision whether the analyzed
data is malicious according to its rules.

This work is supported by Science and Technology Commission of
Shanghai Municipality (No. 06511502), Natural Science Foundation of
Zhejiang Province of China (No. Y106176) and Technology Search
Planned Projects of Zhejiang Province of China (No. 2007C33058).

Traditional signature-based anti-virus scanner gets
segments of file content as the technical component. The
analytical component is just a simple comparison between
the segments and the signature-pattern database. This
method gives birth to a very low false-positive fraction
near to zero while it performs poorly when facing with
previously unknown malicious executables or variants of
existing ones.

Current anti-virus scanner involves static heuristic [3]
to alleviate this problem. Instead of looking for specific
signature of a virus, it looks for virus behavior [4]. Each
signature is a generic code sequence that represents a
behavior feature and a complex comparison is invited in
the analytical component. However, this method also
drives data form the file content as the technical
component and can be obfuscated by techniques such as
polymorphism and metamorphism [5]. Although wildcard
have been added to the code sequence to resolve the
obfuscation problem, a high false positive fraction comes
along consequently. On the other hand this method
depends on aided techniques such as unpacking,
decryption and disassembly.

To overcome the limitation of driving data from file, in
this paper, the data is driven from the action of malicious
executables when running within the operating system.
Our main contributions are summarized as follows:

1. We concluded the characteristic behavior often seen

with malicious executables and defined each behavior
feature with corresponding Win32 API calls and their
certain parameters.

2. An automatic executable behavior tracing system is
implemented to dynamically capture the features we
defined.

3. Experiment result suggests that model based on the
features is efficient in detecting previously unknown
malicious executables which have more than two behavior
features captured.

The rest of this paper is organized as follows: Section 2
describes previous work on malicious executables
detection based on malicious behavior. Section 3 tells the
malicious behavior feature definition. In section 4, the

Fifth International Conference on Fuzzy Systems and Knowledge Discovery

978-0-7695-3305-6/08 $25.00 © 2008 IEEE

DOI 10.1109/FSKD.2008.185

391

architecture of Argus is presented. In section 5,
Experimental result is analyzed and a strategy of detecting
malicious executables is proposed. Section 6 is the
conclusion and outline of future works.

2. Related works

Related works are focused on two aspects most close to
our work, the way of getting Win32 API calls and the
definition of malicious behavior.

J. Y. Xu, A. H. Sung, P. Chavez, and S. Mukkamala
[6] use Win32 API call sequence to reflect the behavior of
an executable and a PE binary parser is developed to
extract static API call sequence. It extracts the CALL
instructions and finds their target APIs. This method
depends on decryption and disassembly and research [7]
shows that incorrect disassembly output is produced when
confronts with control flow obfuscation.

C. Willems, T. Holz, and F. Freiling [8] present
CWSandbox, which executes malware samples in a
simulated environment, monitors all system calls, and
automatically generates a detailed report to simplify and
automate the malware analyst’s task. It monitors all the
executed functionality.

Most similarity to our work is the system implemented
by R. Koike [9]. It captures Win32 API calls of
executables when running within a closed environment.
Relation between monitored behavior and API calls is
defined. However, only two malicious behavior features,
file creation and registry change are monitored. This may
be not enough to issues a verdict whether an executable is
malicious.

In this paper, Win32 API calls together with their
certain parameters are captured dynamically and more
malicious behavior features are defined.

3. Malicious behavior feature definition

In general, the way of representing the malicious run-
time behavior can be divided into two levels, the machine
instruction level and the operating system interface level.
For the first level, a sequence of CPU instructions is used.
For the operating system interface level, the Application
Programming Interface (API) which allows applications
to exploit the service of the operating systems is used.

Taking into account that most executables nowadays
target 32-bit Windows platform and exploit the service of
the operating system, Win32 API is chosen to represent
malicious behavior.

However, the definition of malicious behavior with
Win32 API alone could result in many normal Win32 API
calls are treated unjustly. The same Win32 API call with
different parameters may have various risk ranks. To copy
a .dll file or an .exe file to a system-sensitive directory
tends to be considered malicious while copying a .txt file
to user’s document directory is thought to be normal and
benign. Table 1 shows the risk rank of CopyFile with
different parameters. In the table, Param1 refers to file
name to be copied, Param2 refers to the destination.
System-sensitive directory represents %Windir%,
%System%, %Temp% and so on.

Table 1. Risk evaluation of CopyFile
Param1 Param2 Risk rank

*.dll system-sensitive directory harm
*.exe system-sensitive directory harm
*.dll Other directory less harm
*.exe Other directory less harm
*.txt Any directory benign

To describe malicious behavior more accurately, the

parameters are included with Win32 API to represent the
malicious behavior. Six classes of malicious behavior are
concluded respectively related to file, process, window,
network, register, and windows service. Some are listed
below.

 File-related behavior

1. Creating PE files under system-sensitive directory.
2. Copying PE files to system-sensitive directory.
3. Writing system-sensitive files such as PE files.

 Process-related behavior
1. Writing memory of other processes.
2. Creating remote thread in other processes.
3. Terminating other processes.

 Window-related behavior
1. Hooking keyboard.
2. Hiding window.

 Network-related behavior
1. Binding and listening to port
2. Initiating http connection.

Table 2. Definition of five behavior features
Behavior Features Related APIs Parameter Description

COPY_PEFILE CopyFile CopyFileEx PE files, sensitive directories
TERMINATE_PROCESS TerminateProcess Any process
CLICK_KEYBOARD Sendmessage Keyboard information
SET_CRISIS_REG RegSetValue Sensitive key such as auto run
MODIFY_SERVIC ChangeServiceConfig Such as close update service wuauser

392

 Register-related behavior
1. Creating and Setting register key for automatic

running.
2. Setting register to lower security check.

 Windows service behavior
1. Terminating windows update service
2. Terminating windows fire-wall.
3. Opening telnet service.

A 35-Dimension feature vector is finally defined with

each dimension standing for one behavior feature. Table 2
gives the definition of five malicious behavior features.

4. Auto feature extraction

To dynamically capture the malicious behavior
features, an automatic executable behavior tracing system
(Argus) is implemented. Figure 1 presents its architecture.

Figure 1．The architecture of the Argus

1. Auto Input: it automatically input executables of PE

format into the Sample DB. PE structure rather than
simple .exe suffix is used to exclude non-PE executables.

2. VM Console: it controls the running of VMware and
API Tracer. It consults to the sample DB to acquire the
path information and transferred PE executables into
VMware. The transfer is realized by set share privilege
onto folder including the executables. To protect the
VMware from infection, a clean snapshot of VMware is
recovered every time it runs a new executable.

3. API Tracer: it is a tool that can monitor the running
Win32 API calls of executables and translate living
process stack to API parameters. This tool is base on
windows debug technology.

4. Data Space Mapping: The output of API Tracer is
tracing records of APIs with their parameter. This module
maps this data into the feature vector space for modeling.

5. Evaluation

5.1 Data set description

The data set consists of 11044 samples split into 8223
malicious and 2821 benign executables. Malicious
executables are provided by ANTIY laboratory, a member
of CNCERT/CC. (National Computer Network
Emergency Response Technical Team/Coordination
Center of China). Benign executables are collected from
the Internet.

Both malicious and benign executables are strictly
checked before chosen to construct the data set. Currently,
the API Tracer only targets executables of PE format.
Non-PE executables will not be included in the data set.
For the benign executables, they are firstly scanned by
kaspersky to eliminate hidden malicious ones. And then,
repeated benign executables are deleted according to their
MD5 value.

All the samples are dynamically traced by the Argus to
extract malicious behavior features. Each sample is then
transformed to a vector of the form V = (FI, F2, … , F35).

5.2 Data noise filtering

Statistical analysis had been made to the data set
before the modeling. Table 3 presents the sample
distribution with the number of different features
captured. Of the 8223 malicious samples, 11.95% have no
feature captured. The reason for this can be complex. One
reason is that samples do not run successfully and fully if
needed DLL (Dynamic Link Library) can not be found in
the virtual environment or they need interaction with
human beings. The other reason is that malicious behavior
of the samples is beyond our definition or the malicious
tend to be benign essentially.

Captured
APIs with
Parameters

PE & Commands

Sample DB

Feature Vector Space

VMware

Auto Input

PE

VM
Console Behavior DB

Data Space Mapping

API Tracer

Table 3. Malicious and benign sample distribution with the number of features
Features

Class

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Malicious
 (%) 11.95 22.74 17.76 11.58 11.15 9.45 5.90 4.27 2.30 1.37 1.03 0.26 0.21 0.02 0.00 0.01

Benign
(%) 2.41 10.92 7.94 69.27 5.42 2.23 0.99 0.21 0.25 0.25 0.07 0.00 0.00 0.00 0.04 0.00

393

No matter how, model based on the 35-dimension
feature vector can not classify these non-feature samples
at all.

Another problem must to face is the malicious
executable variants. This may result in training set
includes too many variants belonging to one family.
To avoid the data noise affecting the model, two data
noise filtering rules are presented. As to the feature
number filtering rule, malicious samples with no feature
captured are not chosen for modeling. For benign samples
with no feature captured, we assume that they do not have
these features in essence and include them for modeling.
As to the variant filtering rule, one of the variants is
selected according to their naming regulation.

Figure 2. Sets in the experiment

Figure 2 shows the relationship among the sets. Set O

derives from the 8223 malicious samples according to the
feature number filtering rule. It includes 7240 malicious
samples. Set U derives from set O according to the
variant filtering rule. It contains 1865 malicious samples.
Set 0O stands for benign samples. It includes 2821 benign
samples.

5.3 Evaluation measures

TPF, FPF and ACY are used to evaluate the model
based on our features.

True Positive (TP): Number of malicious executables
correctly classified to be malicious.
True Negative (TN): Number of benign executables
correctly classified to be benign.
False Positive (FP): Number of benign executables
incorrectly classified to be malicious.
False Negative (FN): Number of malicious
executables incorrectly classified to be benign.
True Positive Fraction (TPF): =)/(FNTPTP +
False Positive Fraction (FPF): =)/(TNFPFP +
Accuracy Rate:
ACY =)/()(FNFPTNTPTNTP ++++

5.4 Model training and classification

Set U is randomly divided into set A and B at ratio

4:1. The number of set 0A is set to equal to set A . 1282

malicious samples and equal quantity benign samples are
then selected to train Naïve Bayes Classifier.

Classification tests are separately taken to 4 groups.
The experiment is repeated five times and TPF, FPF,
ACY obtained from the five iterations are averaged to
present the experiment results in Table 4.

Table 4. Experiment result

Group Sets TPF(%) FPF(%) ACY(%)

1 0BB ∪ 69.26 7.64 88.23

2 0AA∪ 67.94 7.70 80.12

3 0OU ∪ 68.21 7.66 83.46

4 0OO∪ 64.98 7.66 72.52

FPF for each testing group is low and steady. TPF of

group 1 indicates the ability of the model to detect
previously unknown executables. The main reason of the
not high TPF is that many malicious samples have few
features. This makes them classified as benign ones
easily. Further analysis of these malicious samples shows
that the number of these samples with one and two
features contributes 84.9% of the false negative.

Table 5. False negative distribution
Number

of
Features

Number
of

samples

Feature4
captured

Feature16
captured

Feature18
captured

1 1500 1500 0 0

2 677 677 443 174

3 151 141 48 19

The other reason is the similarity of captured features
between the malicious samples and benign ones. Table 5
shows the top three contributions of the false negative in
one experiment on group 4. Of the 2563 false negative,
1500 have only one feature captured and all of these
samples have Feature4 captured. According to the
behavior definition, this feature refers to ISDEBUG. By
this activity, samples get to know if they are debugged.
Another frequently captured feature is Feature16,
CREATE_PROCESS. Both features happened 677 and
443 times within the 677 false negative which have two
features captured.

This is same to the benign samples with less than three
features. Of the 308 benign samples with only one feature
captured, 296 have feature4 captured. Of the 224 benign
samples with two features captured, 217 have feature4
captured too.

Both the few features and similar features with benign
samples make the malicious samples classified as benign
ones easily. Although the TPF for the whole 7240
malicious samples is not high, the detecting rate of

O
U

A B

O0

A0 B 0

394

malicious samples with more than two features captured is
acceptable. Table 6 shows the malicious executable
detecting rate distribution with different features in one
experiment on group 4.

Table 6. Detecting rate distribution

Number
of

Features
Samples Detected Detecting

rate (%)

1 1870 370 19.79
2 1460 783 53.63
3 952 801 84.14
4 917 764 83.32
5 777 714 91.89
6 485 466 96.08
7 351 351 100.00
8 189 189 100.00
9 113 113 100.00

10 85 85 100.00
11 21 21 100.00
12 17 17 100.00
13 2 2 100.00
14 0 0 100.00
15 1 1 100.00

Total 7240 4677 64.60

Further experiment is taken to training set and testing
groups with a feature threshold of 3. That is, malicious
samples with features less than the feature threshold will
not be included in the training set and testing group. Table
7 shows the classification results with a threshold of 3.

Table 7. Experiment result with a threshold of 3
Group Sets TPF(%) FPF(%) ACY(%)

1 0BB ∪ 89.27 7.91 91.87

2 0AA∪ 89.64 7.15 91.24

3 0OU ∪ 89.56 7.71 91.63

4 0OO∪ 88.17 7.71 89.90

The experiment result improves with a TPF increase of
20% while the FPF keeps steady. Corresponsively, a
strategy for malicious executable detection based on the
method is proposed. For executables with one or two
features, alarms of captured features are reported. For
executables with more than two features captured, the
classifier makes a decision whether they are malicious or
not.

6. Conclusion and future works

In this paper, we propose a malicious executable
detecting method using 35-Dimension feature vector and

define each feature with corresponding Win32 API calls
and their certain parameters. Model based on the features
performs well in detecting malicious executables, but it is
still limited to detect executables with more than two
features captured. Future work will focus on two aspects:
concluding more characteristic malicious behavior and
perfecting the Argus performance. We intend to increase
the dimension of the feature vector so that the executables
can have more features. The main problem facing the
Argus is that many malicious executables need human
interaction when running. If they do not run fully or
successfully, few features are still be captured by the
Argus. In fact, most of the interaction with human beings
is just a button clicking. So, future work aims to let the
Argus to click for itself.

References

[1] M. G. Schultz, E. Eskin, E. Zadok, and S. J. Stolfo, “Data
Mining Methods for Detection of New Malicious Executables”,
in 2001 IEEE Symposium on Security and Privacy, 2001, pp.
38-49.

[2] Alisa Shevchenko, “The evolution of technologies used to de
tect malicious code”, 2007, http://www.viruslist.com/en/analysis?
pubid=204791972

[3] Jay Munro, “Antivirus Research and Detection Techniques”,
2002, http://www.extremetech.com/article2/0,1697,325439,00.as
p

[4] M. Christodorescu, S. Jha, and C. Kruegel, “Mining
specifications of malicious behavior”, in first Conference on
India Software Engineering Conference, 2008, ACM press, pp.
5-14.
[5] M. Christodorescu and S. Jha, “Static Analysis of
Executables to Detect Malicious Patterns”, in Twelfth Security
Symposium, 2003, pp. 169-186.

[6] J. Y. Xu, A. H. Sung, P. Chavez, and S. Mukkamala,
“Polymorphic Malicious Executable Scanner by API Sequence
Analysis”, in Fourth International Conference on Hybrid
Intelligent Systems, 2004, pp. 378-383.

[7] A. Moser, C. Kruegel, and E. Kirda, “Limits of Static
Analysis for Malware Detection”, in Twenty-Third Annual
Computer Security Applications Conference, 2007, pp. 421-430.

[8] C. Willems, T. Holz, and F. Freiling, “Toward Automated
Dynamic Malware Analysis Using CWSandbox”, in Security &
Privacy: IEEE Computer Society, 2007, pp. 32-39.

[9] R. Koike, N. Nakaya, and Y. Koi, “Development of System
for the Automatic Generation of Unknown Virus Extermination
Software”, in International Symposium on Applications and the
Internet, 2007, pp. 8-8.

395

