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Abstract 
 

Traditional anti-virus scanner employs static features 
to detect malicious executables. Unfortunately, this 
content-based approach can be obfuscated by techniques 
such as polymorphism and metamorphism. In this paper, 
we propose a malicious executable detecting method 
using 35-Dimension feature vector. Each dimension 
stands for a malicious run-time behavior feature 
represented by corresponding Win32 API calls and their 
certain parameters. An automatic executable behavior 
tracing system (Argus) is also implemented to dynamically 
capture the features. Experiments are performed on a 
data set of 8223 malicious and 2821 benign executables. 
Training set is then used to generate detection model and 
several testing groups are set up for classification. 
Experiment result suggests that the method is efficient in 
detecting previously unknown malicious executables 
which have more than two behavior features captured.  
 
 
1. Introduction 
 

Malicious executables are computer programs which 
do damage or inconvenience to computer users. Typical 
examples include computer viruses, Trojan horses, 
worms, spyware and adware [1]. 

Technologies used to detect malicious executables can 
be separated into technical component and analytical 
component [2]. 

A technical component: it provides data to be 
analyzed by the analytical component. The data may be 
file byte code, text strings and action of a malicious 
executable running within the operating system.1 

An analytical component: it acts as a decision-
making system. It makes a decision whether the analyzed 
data is malicious according to its rules.  
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Traditional signature-based anti-virus scanner gets 
segments of file content as the technical component. The 
analytical component is just a simple comparison between 
the segments and the signature-pattern database. This 
method gives birth to a very low false-positive fraction 
near to zero while it performs poorly when facing with 
previously unknown malicious executables or variants of 
existing ones.  

Current anti-virus scanner involves static heuristic [3] 
to alleviate this problem. Instead of looking for specific 
signature of a virus, it looks for virus behavior [4]. Each 
signature is a generic code sequence that represents a 
behavior feature and a complex comparison is invited in 
the analytical component. However, this method also 
drives data form the file content as the technical 
component and can be obfuscated by techniques such as 
polymorphism and metamorphism [5]. Although wildcard 
have been added to the code sequence to resolve the 
obfuscation problem, a high false positive fraction comes 
along consequently. On the other hand this method 
depends on aided techniques such as unpacking, 
decryption and disassembly.   

To overcome the limitation of driving data from file, in 
this paper, the data is driven from the action of malicious 
executables when running within the operating system. 
Our main contributions are summarized as follows: 

 
1. We concluded the characteristic behavior often seen 

with malicious executables and defined each behavior 
feature with corresponding Win32 API calls and their 
certain parameters. 

2. An automatic executable behavior tracing system is 
implemented to dynamically capture the features we 
defined. 

3. Experiment result suggests that model based on the 
features is efficient in detecting previously unknown 
malicious executables which have more than two behavior 
features captured.  

The rest of this paper is organized as follows: Section 2 
describes previous work on malicious executables 
detection based on malicious behavior. Section 3 tells the 
malicious behavior feature definition. In section 4, the 
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architecture of Argus is presented. In section 5, 
Experimental result is analyzed and a strategy of detecting 
malicious executables is proposed. Section 6 is the 
conclusion and outline of future works. 

 
2. Related works 
 

Related works are focused on two aspects most close to 
our work, the way of getting Win32 API calls and the 
definition of malicious behavior. 

J. Y. Xu, A. H. Sung, P. Chavez, and S. Mukkamala 
[6] use Win32 API call sequence to reflect the behavior of 
an executable and a PE binary parser is developed to 
extract static API call sequence. It extracts the CALL 
instructions and finds their target APIs. This method 
depends on decryption and disassembly and research [7] 
shows that incorrect disassembly output is produced when 
confronts with control flow obfuscation.  

C. Willems, T. Holz, and F. Freiling [8] present 
CWSandbox, which executes malware samples in a 
simulated environment, monitors all system calls, and 
automatically generates a detailed report to simplify and 
automate the malware analyst’s task. It monitors all the 
executed functionality.  

Most similarity to our work is the system implemented 
by R. Koike [9]. It captures Win32 API calls of 
executables when running within a closed environment. 
Relation between monitored behavior and API calls is 
defined. However, only two malicious behavior features, 
file creation and registry change are monitored. This may 
be not enough to issues a verdict whether an executable is 
malicious.  

In this paper, Win32 API calls together with their 
certain parameters are captured dynamically and more 
malicious behavior features are defined.   

 
3. Malicious behavior feature definition 
 

In general, the way of representing the malicious run-
time behavior can be divided into two levels, the machine 
instruction level and the operating system interface level. 
For the first level, a sequence of CPU instructions is used. 
For the operating system interface level, the Application 
Programming Interface (API) which allows applications 
to exploit the service of the operating systems is used.   

Taking into account that most executables nowadays 
target 32-bit Windows platform and exploit the service of 
the operating system, Win32 API is chosen to represent 
malicious behavior.  

However, the definition of malicious behavior with 
Win32 API alone could result in many normal Win32 API 
calls are treated unjustly.  The same Win32 API call with 
different parameters may have various risk ranks. To copy 
a .dll file or an .exe file to a system-sensitive directory 
tends to be considered malicious while copying a .txt file 
to user’s document directory is thought to be normal and 
benign. Table 1 shows the risk rank of CopyFile with 
different parameters. In the table, Param1 refers to file 
name to be copied, Param2 refers to the destination. 
System-sensitive directory represents %Windir%, 
%System%, %Temp% and so on. 
 

Table 1. Risk evaluation of CopyFile 
Param1 Param2 Risk rank 

*.dll system-sensitive directory harm 
*.exe system-sensitive directory harm 
*.dll Other directory less harm 
*.exe Other directory less harm 
*.txt Any directory benign 

 
To describe malicious behavior more accurately, the 

parameters are included with Win32 API to represent the 
malicious behavior. Six classes of malicious behavior are 
concluded respectively related to file, process, window, 
network, register, and windows service. Some are listed 
below. 

 
 File-related behavior 

1. Creating PE files under system-sensitive directory. 
2. Copying PE files to system-sensitive directory. 
3. Writing system-sensitive files such as PE files.  

  Process-related behavior 
1. Writing memory of other processes. 
2. Creating remote thread in other processes.  
3. Terminating other processes. 

  Window-related behavior 
1. Hooking keyboard. 
2. Hiding window. 

 Network-related behavior 
1. Binding and listening to port 
2. Initiating http connection.  

Table 2. Definition of five behavior features
Behavior Features Related APIs Parameter Description 

COPY_PEFILE CopyFile CopyFileEx PE files, sensitive directories 
TERMINATE_PROCESS TerminateProcess Any process 
CLICK_KEYBOARD Sendmessage Keyboard information 
SET_CRISIS_REG RegSetValue Sensitive key such as auto run 
MODIFY_SERVIC ChangeServiceConfig Such as close update service wuauser 
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 Register-related behavior 
1. Creating and Setting register key for automatic 

running. 
2. Setting register to lower security check.  

 Windows service behavior 
1. Terminating windows update service 
2. Terminating windows fire-wall. 
3. Opening telnet service. 

 
A 35-Dimension feature vector is finally defined with 

each dimension standing for one behavior feature. Table 2 
gives the definition of five malicious behavior features. 
 
4. Auto feature extraction 
 

To dynamically capture the malicious behavior 
features, an automatic executable behavior tracing system 
(Argus) is implemented. Figure 1 presents its architecture. 
 

 
Figure 1．The architecture of the Argus 

 
1. Auto Input: it automatically input executables of PE 

format into the Sample DB. PE structure rather than 
simple .exe suffix is used to exclude non-PE executables. 

2. VM Console: it controls the running of VMware and 
API Tracer. It consults to the sample DB to acquire the 
path information and transferred PE executables into 
VMware. The transfer is realized by set share privilege 
onto folder including the executables. To protect the 
VMware from infection, a clean snapshot of VMware is 
recovered every time it runs a new executable. 

3. API Tracer: it is a tool that can monitor the running 
Win32 API calls of executables and translate living 
process stack to API parameters. This tool is base on 
windows debug technology.  

4. Data Space Mapping: The output of API Tracer is 
tracing records of APIs with their parameter. This module 
maps this data into the feature vector space for modeling. 
 
5. Evaluation 
 
5.1 Data set description  
 

The data set consists of 11044 samples split into 8223 
malicious and 2821 benign executables. Malicious 
executables are provided by ANTIY laboratory, a member 
of CNCERT/CC. (National Computer Network 
Emergency Response Technical Team/Coordination 
Center of China). Benign executables are collected from 
the Internet.  

Both malicious and benign executables are strictly 
checked before chosen to construct the data set. Currently, 
the API Tracer only targets executables of PE format. 
Non-PE executables will not be included in the data set. 
For the benign executables, they are firstly scanned by 
kaspersky to eliminate hidden malicious ones. And then, 
repeated benign executables are deleted according to their 
MD5 value.  

All the samples are dynamically traced by the Argus to 
extract malicious behavior features. Each sample is then 
transformed to a vector of the form V = (FI, F2, … , F35).  
 
5.2 Data noise filtering  
 

Statistical analysis had been made to the data set 
before the modeling. Table 3 presents the sample 
distribution with the number of different features 
captured. Of the 8223 malicious samples, 11.95% have no 
feature captured. The reason for this can be complex. One 
reason is that samples do not run successfully and fully if 
needed DLL (Dynamic Link Library) can not be found in 
the virtual environment or they need interaction with 
human beings. The other reason is that malicious behavior 
of the samples is beyond our definition or the malicious 
tend to be benign essentially. 

Captured 
APIs with 
Parameters 

 

PE & Commands 

Sample DB 

Feature Vector Space

VMware 

Auto Input  

PE  

VM 
Console Behavior DB 

Data Space Mapping 

API Tracer 

Table 3.  Malicious and benign sample distribution with the number of features
Features  

 
Class 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Malicious 
 (%) 11.95 22.74 17.76 11.58 11.15 9.45 5.90 4.27 2.30 1.37 1.03 0.26 0.21 0.02 0.00 0.01

Benign  
(%) 2.41 10.92 7.94 69.27 5.42 2.23 0.99 0.21 0.25 0.25 0.07 0.00 0.00 0.00 0.04 0.00
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No matter how, model based on the 35-dimension 
feature vector can not classify these non-feature samples 
at all. 

Another problem must to face is the malicious 
executable variants. This may result in training set 
includes too many variants belonging to one family. 
To avoid the data noise affecting the model, two data 
noise filtering rules are presented. As to the feature 
number filtering rule, malicious samples with no feature 
captured are not chosen for modeling. For benign samples 
with no feature captured, we assume that they do not have 
these features in essence and include them for modeling. 
As to the variant filtering rule, one of the variants is 
selected according to their naming regulation. 

 
 

Figure 2. Sets in the experiment 
 
Figure 2 shows the relationship among the sets. Set O  

derives from the 8223 malicious samples according to the 
feature number filtering rule. It includes 7240 malicious 
samples. Set U derives from set O  according to the 
variant filtering rule. It contains 1865 malicious samples.  
Set 0O stands for benign samples. It includes 2821 benign 
samples. 
 
5.3 Evaluation measures 
 

TPF, FPF and ACY are used to evaluate the model 
based on our features.  

True Positive (TP): Number of malicious executables 
correctly classified to be malicious. 
True Negative (TN): Number of benign executables 
correctly classified to be benign. 
False Positive (FP): Number of benign executables 
incorrectly classified to be malicious. 
False Negative (FN): Number of malicious 
executables incorrectly classified to be benign. 
True Positive Fraction (TPF): = )/( FNTPTP +  
False Positive Fraction (FPF): = )/( TNFPFP +  
Accuracy Rate:  
ACY = )/()( FNFPTNTPTNTP ++++  
 

5.4 Model training and classification 
 
Set U  is randomly divided into set A  and B  at ratio 

4:1. The number of set 0A  is set to equal to set A . 1282 

malicious samples and equal quantity benign samples are 
then selected to train Naïve Bayes Classifier. 

Classification tests are separately taken to 4 groups. 
The experiment is repeated five times and TPF, FPF, 
ACY obtained from the five iterations are averaged to 
present the experiment results in Table 4. 

 
Table 4. Experiment result 

Group Sets TPF(%) FPF(%) ACY(%) 

1 0BB ∪ 69.26 7.64 88.23 

2 0AA∪ 67.94 7.70 80.12 

3 0OU ∪ 68.21 7.66 83.46 

4 0OO∪ 64.98 7.66 72.52 
 
FPF for each testing group is low and steady. TPF of 

group 1 indicates the ability of the model to detect 
previously unknown executables. The main reason of the 
not high TPF is that many malicious samples have few 
features. This makes them classified as benign ones 
easily. Further analysis of these malicious samples shows 
that the number of these samples with one and two 
features contributes 84.9% of the false negative.  
 

Table 5. False negative distribution 
Number 

of 
Features 

Number 
of 

samples 

Feature4 
captured 

Feature16 
captured 

Feature18 
captured 

1 1500 1500 0 0 

2 677 677 443 174 

3 151 141 48 19 
 

The other reason is the similarity of captured features 
between the malicious samples and benign ones. Table 5 
shows the top three contributions of the false negative in 
one experiment on group 4. Of the 2563 false negative, 
1500 have only one feature captured and all of these 
samples have Feature4 captured. According to the 
behavior definition, this feature refers to ISDEBUG. By 
this activity, samples get to know if they are debugged. 
Another frequently captured feature is Feature16, 
CREATE_PROCESS. Both features happened 677 and 
443 times within the 677 false negative which have two 
features captured. 

This is same to the benign samples with less than three 
features. Of the 308 benign samples with only one feature 
captured, 296 have feature4 captured. Of the 224 benign 
samples with two features captured, 217 have feature4 
captured too. 

Both the few features and similar features with benign 
samples make the malicious samples classified as benign 
ones easily. Although the TPF for the whole 7240 
malicious samples is not high, the detecting rate of 

O  
U  

A    B   

 
O0  

A0      B 0  
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malicious samples with more than two features captured is 
acceptable. Table 6 shows the malicious executable 
detecting rate distribution with different features in one 
experiment on group 4. 

 
Table 6. Detecting rate distribution  

Number 
of 

Features 
Samples Detected Detecting 

rate (%) 

1 1870 370 19.79 
2 1460 783 53.63 
3 952 801 84.14 
4 917 764 83.32 
5 777 714 91.89 
6 485 466 96.08 
7 351 351 100.00 
8 189 189 100.00 
9 113 113 100.00 

10 85 85 100.00 
11 21 21 100.00 
12 17 17 100.00 
13 2 2 100.00 
14 0 0 100.00 
15 1 1 100.00 

Total 7240 4677 64.60 
 

Further experiment is taken to training set and testing 
groups with a feature threshold of 3. That is, malicious 
samples with features less than the feature threshold will 
not be included in the training set and testing group. Table 
7 shows the classification results with a threshold of 3.  
 
Table 7. Experiment result with a threshold of 3 
Group Sets TPF(%) FPF(%) ACY(%) 

1 0BB ∪  89.27 7.91 91.87 

2 0AA∪  89.64 7.15 91.24 

3 0OU ∪  89.56 7.71 91.63 

4 0OO∪  88.17 7.71 89.90 
 

The experiment result improves with a TPF increase of 
20% while the FPF keeps steady. Corresponsively, a 
strategy for malicious executable detection based on the 
method is proposed. For executables with one or two 
features, alarms of captured features are reported. For 
executables with more than two features captured, the 
classifier makes a decision whether they are malicious or 
not. 

 
6. Conclusion and future works  
 

In this paper, we propose a malicious executable 
detecting method using 35-Dimension feature vector and 

define each feature with corresponding Win32 API calls 
and their certain parameters. Model based on the features 
performs well in detecting malicious executables, but it is 
still limited to detect executables with more than two 
features captured. Future work will focus on two aspects: 
concluding more characteristic malicious behavior and 
perfecting the Argus performance. We intend to increase 
the dimension of the feature vector so that the executables 
can have more features. The main problem facing the 
Argus is that many malicious executables need human 
interaction when running. If they do not run fully or 
successfully, few features are still be captured by the 
Argus. In fact, most of the interaction with human beings 
is just a button clicking. So, future work aims to let the 
Argus to click for itself.  
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