
Email Conversations Reconstruction Based on Messages Threading for Multi-
person

Xia Wang, Ming Xu, Ning Zheng, Mo Chen

 Institute of Computer Application Technology,
Hangzhou Dianzi University, Hangzhou, ZheJiang, 310018, China

annewang@stu.hdu.edu.cn, hz_xuming@126.com , nzheng@hdu.edu.cn, mchen@stu.hdu.edu.cn

Abstract

The email conversations reconstruction and analysis is
a key task of the digital forensic, however, most forensic
tools only parse email data without analysis. This paper
presents a novel thread-based conversations
reconstruction mechanism that provides an effective
analysis and statistics of the email flows for multi-person.
The mechanism includes a data extraction rule for email
headers extraction and redundant emails filtering, a
messages mapping algorithm to keep the messages
without Message-ID in correct Parent/Child relationship,
and a topic-based heuristic to merge or decompose
threads to conversations. The experiment results show
that our mechanism exhibits high performance on
conversation detection, tracking and Parent/Child
relationship keeping, which suggest that the mechanism is
a feasible strategy for email conversations reconstruction
in digital forensic.

1. Introduction

Due to the convenience and cost effectiveness, email is
being utilized widely for communication, either
legitimately or illegitimately, and becoming an important
medium of digital evidence. As a major task of computer
forensic, email forensic include two steps after collecting-
-parsing and analysis, and the latter is more neglected
than the former in most forensic tools. To analysis, two
perspectives are focused on: 1) the text mining and 2) the
link analysis for the social network analysis. Both of them
need take emails as inputs, and a clustered email corpus
by conversations will be a great benefit to the analysis,
especially to the statistics of the reply rate and response
time of a user.

An email thread is considered as a tree, where nodes of
the tree represent emails and a directed arc going from
one node to another represent the reply or forwarding
relation of them. A conversation is based on an email
thread but clustered by topic. Due to the Reference header
of a message being omitted by some email clients or
users’ special operation, a conversation may span several

threads. And a thread may be distributed over several
conversations, because some people use the “Reply To”
button instead of “New Mail” button to start a new
conversation. Therefore, the threads have to be merged or
decomposed to construct the conversations.

Many email clients group emails to conversations for
users. Zawinski [1] detailed a message threading algorithm
applied to the email clients, however, as a forensic way to
construct conversations for multi-person, his algorithm
still has some problems to resolve. In order to achieve
high quality email mining, it is necessary to reconstruct
email conversations at first. This is exactly the problem
addressed in this paper.

In this paper, we present a novel thread-based
conversations construction mechanism for an effective
analysis and statistics of the email flows for multi-person.
The main contributions of our mechanism are:

1) A data extraction rule for email headers extraction

and redundant emails filtering for multi-person,
2) A messages mapping algorithm to help the

messages without Message-ID find the correct
Parent/Child relationship,

3) A topic-based heuristic to merge or decompose
threads to conversations.

The mechanism is tested by a corpus collected from

four volunteers of a research team. Compared with
Outlook Express and Zawinski’s algorithm, the results
indicate that it performs better and is feasible and
valuable in digital forensic analysis process.

The rest of this paper proceeds as follows. Section 2
details the related work. Section 3 shows the extraction of
email data. Section 4 describes how to reconstruct
conversations. Section 5 discusses experimental setup and
results. Section 6 concludes this paper.

2. Related work

Past attempts [2, 3, 4] which work on email threads have
largely focused on visualization of thread information.
Deepak P et al [5] detailed the analysis of Enron email
threads and quantification of employee responsiveness. Its

2008 International Workshop on Education Technology and Training & 2008 International Workshop on Geoscience and Remote Sensing

978-0-7695-3563-0/08 $25.00 © 2008 IEEE

DOI 10.1109/ETTandGRS.2008.321

676

2008 International Workshop on Education Technology and Training & 2008 International Workshop on Geoscience and Remote Sensing

978-0-7695-3563-0/08 $25.00 © 2008 IEEE

DOI 10.1109/ETTandGRS.2008.321

676

threading approach is different from ours, since we not
only use the subject lines but also the References and
other headers of email to construct the conversations. And
the EMT [6, 7] ranks the email users in social network by
their responsiveness mentioned in [5]. BuzzTrack [8]
presented a topic-based TDT algorithm to cluster emails,
however, the Parent/Child relationship is not focused on
as ours.

Most similar to our work is the message threading
algorithm proposed by Jamie Zawinski [1]. It is used in
Netscape Mail and News 2.0 and 3.0. The Java
implementation of this algorithm is available in the
Grendel source. This algorithm is also described in the
imapext-thread Internet Draft by Mark Crispin and
Kenneth Murchison [9]. In the algorithm the Parent/Child
relationships are built using two methods: reconstructing
a message's ancestry by the References header contained
within it; and checking the original (not base) subject of a
message to see if it is a reply to (or forward of) another
message. Our approach is applied to construct
conversations with multi-person’s email data. In order to
keep the correct Parent/Child relationships in the
conversations, we adjust the order of Message-IDs in the
wrong References headers, and improve his algorithm by
adding the processes of message mapping, threads
decomposition and merging.

3. Extraction of Relational Data

 There are three fields in email headers contributing to
threading: 1) Message-ID, a unique identifier for the
message; 2) In-Reply-To, Message-ID of the message to
which this one is a direct reply; and 3) References,
Message-IDs of the message's ancestry. In practice, many
email clients generate and use the References header
instead of In-Reply-To, so sometimes there is only one of
them in the mail. Because the Message-ID is appended
when the mail passing SMTP servers, a mail in a sender’s
outbox has no Message-ID before sending. But the
corresponding mail received by a recipient has been
appended the Message-ID header. In fact, the two mails
are considered as the same one.

Firstly, the corpus collected from multi-person are
parsed, and for each email, a record is inserted to a
database with its sender, send-time, recipient, subject,
Message-ID and ReferenceIDs. The ReferenceIDs field is
populated from the References and/or In-Reply-To
headers. If a mail only has one of the two headers, set
ReferenceIDs the same as the one. If a mail has none of
them, set ReferenceIDs NIL. The Message-IDs in a
References are displayed in order. The first one is the
parent of the second, and the second is the parent of the
third, etc. In fact, some clients append a Message-ID to
References in the opposite order. So if a mail has both
two headers, the In-Reply-To should be considered firstly.
For each mail, if the Message-ID in the In-Reply-To isn’t

same as the last one but the first in the References, adjust
the References by turning the first one to be the last and
set ReferenceIDs the same as the adjusted References,
otherwise set it the original one.

The redundant records have to be filtered: 1) For the
records with Message-ID, we delete the duplicate records
with the same Message-ID; 2) For the records without
Message-ID, if its corresponding records with Message-
ID can be found in the database, delete it, else retain it.
The corresponding records can be matched by send-time,
sender, recipient and other features. After filtering, the
records are ordered by send-time. All the above work can
be done by database SQL queries.

4. Conversation Reconstruction

Step 1 (Message Threading): In this step, a table is

created for associating emails’ Message IDs with their
parents’, called T_P/C. And a hash table, T_Mesg, is
created, which associates emails’ Message-IDs with their
message objects about the mails’ information. Then the
two tables are populated by Zawinski’s algorithm to build
the Parent/Child relation links with each record. A
dummy mail is created to be the parent of the mails with
NIL ReferenceIDs. To each mail without Message-ID, a
unique Message-ID is assigned for it. To each mail whose
Message-ID only can be extracted from References, set its
message object NIL.

Owing to the ordered records, T_P/C is populated in
send-time order too, and it plays a key role in message
threading. The construction of a thread tree is a recursion
process starting from the “root” mail. After the recursion
of each mail in T_P/C, the tree has been created, and then
we delete T_P/C.

Step 2 (Nodes Mapping): Each node of the tree
represents a mail identified by its Message-ID. There are
three kinds of mails in the tree as we show in the Figure
1(a): 1) The really existent mails with Message-IDs in the
database; 2) The dummy mails with the NIL message
objects which don’t exist in the database (deleted by the
email users), such as M’. Their Message-IDs are traced
from the References of other mails, and use their earliest
descendant’s send-time and subjects to instead of theirs; 3)
The mails with the Message-ID assigned by us, like M.
As we address in section 3, their corresponding mails
have Message-IDs which will be quoted in References of
the reply mails. So if there is a corresponding mails M of
M’ in the thread tree, replace M’ with M and use the
Message-ID of M’ to instead of the one assigned by us.
We define the following heuristic to define the mapping.

— Map M’ to M where:
• They have the same parent mail;
• The earliest child of M’ is sent after M;
• M’ or the parent of M’ has the same base subject

with M;

677677

• If M’ has children, the senders of them must be in
the recipients list of M.

Figure 1 A simple case of a thread tree. (a) is a tree got by
step 1. (b) is a tree got by Zawinski’s approach. (c) is a tree

after mapping

If more than one mail be found after above filtering,
chose the sent-time nearest one. Figure 1(c) shows the
mapping result of (a). (b) is the result through Zawinski’s
approach, which M’ is deleted without mapping, and its
child is promoted to its level. The Parent/Child
relationship of the mails is broke.

Step 3 (Threads Decomposition): Each subtree under
the root is a thread. A thread should be divided into
several when the mails in it have the different base subject
lines. Traverse each thread under the root, for each mail,
if its parent isn’t root and its base subject is different to its
parents’, break the links with its parent and promote it to
be the last child of root as the first mail of a new thread.
In order to reconstruct the conversation completely, most
dummy mails are retained but the dummies in top-level
under the root, for their disadvantage in threads merging.
Traverse each child of the root, for each mail, if it is a
dummy and only has one child, delete it and promote its
child to its level, but if it has more than one child, retain it.

A difficulty is the topic of thread drift. Someone may
change the subjects of email which really belong to one
thread, and the threads Decomposition will mistakes such
case. In terms of the robustness, the text mining can be
better to this difficulty. Gladly, the average number of
topics per thread in the development corpus is just 1.02 –
this problem applies to only a small number of emails.

Step 4 (Threads Merging): The threads with the same
base subject should be merged. When merging, the
primary and the secondary relation of the threads and the
conjunctional points should be considered. Firstly, the
threads are sorted by their first mail’s send-time. Then
traverse each first mail of the threads. For each mail, if
there is a sibling mail with the same base subject sent
before it, merge the current mail S with the sibling mail P.
There are three cases about the merging.

a) Both S and P are dummies: Make S a child of P.
b) S is a dummy but P isn’t: Create a new dummy and

make both P and S children of it.
c) S is not a dummy:

• Traverse each descendant of P to find a mail that
meets the follow rulers to be the parent of S: 1)
It’s sent before S; 2) The sender of S is in its
recipient lists; 3) Its send-time is nearest with S.

• If none can be found, use case a or b to merge
according to whether P is a dummy.

Such merging mechanism makes the early one of the

two threads primary, and the secondary one may be a
subtree or a sibling-tree of the primary. If the first mail of
the secondary is dummies, the parent mail of S can't be
found. So a dummy is made to be both two threads' parent,
take the case a or b as an example. If the first mail of the
secondary is not dummies, the parent mail of S may be
found in primary through the feathers mentioned in case c.
When the parent mail still can't be found, a dummy parent
should be made as case a or b.

Considering the merging mechanism, if someone uses
the same subject in different threads which not belong to
one conversation, the two threads should not to be merged.
Thus the two threads’ time interval and mail accounts
should be considered. If time interval greater than 3 days
or the sender of the first mail of the secondary is not in
the list of mail accounts included in primary, never do the
merging.

After above steps, the Conversation Reconstruction is
over. Each conversation is clustered by topics, and keeps
the Parent/Child relationship which will contribute to
email statistics.

5. Evaluation

5.1. Corpus

We collect four Master students’ emails to be the

corpus. Enron corpus [10] is rejected to use for two
reasons: First, it is cleared by other researchers, hence
only contains the mails about the business. Second, some
features in email header (“References” and “In-Reply-
To”) contributing to threading are cleared too.

The corpus is manually divided into conversations by
the subject. It covers one academic semester from Dec 1,
2007 to Jun 1, 2008. Table 1 shows the resulting split.
The number of mails of the Total Emails is not the sum of
the four students’, since the duplicate mails are filtered by
the way addressed in Section 3.

Table 1 Detail of the corpus
Email Data Set Number of

Mails
Number of

Conversations
Student 1 471 294
Student 2 320 186
Student 3 274 156
Student 4 132 81

Total Emails 1067 613

5.2. Evaluation Methodology

678678

Though there are many forensic tools integrated with

email parsing and analyzing, none of them groups email
by conversations. Fortunately, many email clients provide
such service. The performance of our approach is
compared with OE’s and Zawinski’s using the Total
Emails data set.

The performance is measured from four aspects: Pncd,
the precision of new conversation detection, Fncd, the false
alarm of new conversation detection, Pct, the precision of
conversation tracking, Prk, the precision of Parent/Child
relationship keeping. Dc means the new detected
conversations that belong to the conversation set split by
us. T means the conversations that just contain all the
correct children mails. R means the conversations that
keep Parent/Child relationship right. Four specific
measures are displayed as follows:

%100
||

||
∗=

onsconversatiTotle
D

P c
ncd (1)

%100
||

||
∗=

onsconversatiTotle
D

F c
ncd (2)

%100
||

|| ∗=
onsconversatiTotle

TPct (3)

%100
||

|| ∗=
onsconversatiTotle

RTPrk
∪ (4)

Besides these, the benefit of our approach is showed
from another perspective: ART, the average response time
of mails in a conversation. RT is defined as the difference
between the send-time of a mail and its parents’. ART is
the average of the sum of RT in a conversation. Each
relative distance between a real conversation’s ART and
the ART calculated by each approach are compared to
show the influence of each approach on the accuracy of
ART.

5.3. Evaluation Result

The results are showed in the Figure 2, 3, 4. In the
Figure 2, the performance of our approach is obviously
greater than the others. It detects all the conversations,
and keeps high precision (more than 92.02%) both in Pct
and Prk. But its Fncd (5.55%) is higher than the others (0%).
It is caused by the threads decomposition. When parsing
the mails to get subjects, some Chinese words are

decoded to confused characters which affect the accuracy
of threads decomposition. Since the absence of threads
decomposition, the other two approaches have 0% false
alarm, and both of them have a similar performance in
each aspect. But OE is a little weak in the Pncd, because it
misses two conversations which will introduce a loop in
the Parent/Child relationship.

0%

20%

40%

60%

80%

100%

120%

Pncd PFAncd Pct Prk

Outlook

Jamie Zawinski's

Our approach

Figure 2 The performance compared by the three

approaches

Decomposition

Mapping&Replacment

Merging

Wrong References

Figure 3 The factors affecting the performance of the three

approaches

Figure 3 shows the factors that cause the difference
among the three approaches. Threads decomposition takes
a large percentage, for the new conversation detection is
influenced seriously by it, so is the conversation tracing.
The other three factors take an important role in keeping
Parent/Child relationship. Figure 4 shows the relative
distance of ART affected by each approaches. For
comparison, the conversations with correct Parent/Child
relationship through all the approaches are not displayed.
If a conversation is not detected, the D_ART is 100%.
Obviously, our D_ART is more near 0%, so it is closest to
the real ART.

0%
50%

100%
150%

200%
250%

300%
350%

400%
450%

500%

C
34

8
C

35
2

C
35

6
C

36
0

C
36

4
C

36
8

C
37

2
C

37
6

C
38

0
C

38
4

C
38

8
C

39
2

C
39

6
C

40
0

C
40

4
C

40
8

C
41

2
C

41
6

C
42

0
C

42
4

C
42

8
C

43
2

C
43

6
C

44
0

C
44

4
C

44
8

C
45

2
C

45
6

C
46

0
C

46
4

C
46

8
C

47
2

C
47

6
C

48
0

C
48

4
C

48
8

C
49

2
C

49
6

C
50

0
C

50
4

C
50

8
C

51
2

C
51

6
C

52
0

C
52

4
C

52
8

C
53

2
C

53
6

C
54

0
C

54
4

C
54

8
C

55
2

C
55

6
C

56
0

C
56

4
C

56
8

C
57

2
C

57
6

C
58

0
C

58
4

C
58

8
C

59
2

C
59

6
C

60
0

C
60

4
C

60
8

C
61

2

Outlook D_ART

Jamie Zawinski D_ART

Our D_ART

679679

Figure 4 The distance of ART for three approaches

6. Conclusion

As an important medium of digital evidence, email
artifacts reconstruction and analysis is necessary. We
designed and evaluated a mechanism for conversation
reconstruction based on mail threading. There is quite a
few works about threading multi-person’s emails before
ours. In the mechanism, the mails without Message-IDs
can be threaded in the correct positions and a new
conversation started by the “Reply To” button also can be
detected by threads decomposition. It keeps the
Parent/Child relationship as far as possible.

However, there are several challenges. It relies on
send-time of the mails to threading. When the mail’s
send-time is a forgery, the results may be affected even
introduced a loop in the tree. While mapping, if more than
one mail can be found, the send-time nearest one we
chose may not be correct. We endeavour to find some
ways to reduce the false alarm of the new conversation
detection caused by wrong decoded Chinese characters,
which is a part of the future work. Also, we plan to design
a new way to visualize the thread tree which contains
many dummies.

Acknowledgement

This work is supported by the Natural Science

Foundation of Zhejiang Province of China under
No.Y106176, and the science and technology research
Planned Projects of Zhejiang Province of China under
Grant No.2007C33058.

References

[1] Jamie Zawinski (2002). “Message Threading”.
http://www.jwz.org/doc/threading.html.

[2] Bernard J. Kerr (2003). “Thread arcs: An email thread
visualization”. Technical Report RC22850 (W0307-148).
IBM Research Report. IBM Research, One Rogers Street,
Cambridge, MA 02142.

[3] Gina Danielle Venolia, Carman Neustaedter (2003).
“Understanding sequence and reply relationships within
email conversations: a mixed-model visualization”. In
Conferenceon Human Factors in Computing Systems.

[4] Adam Perer, Ben Shneiderman (2005). “Beyond threads:
Identifying discussions in email archives”. Technical
Report A264044, Human Computer Interaction Lab,
Maryland University, College Park.

[5] D.G. Deepak P, V. Varshney (2007). “Analysis of enron
email threads and quantification of employee
responsiveness”. In Proceedings of the Text Mining and
Link Analysis Workshop on International Joint Conference
on Artificial Intelligence, Hyderabad, India.

[6] Salvatore J. Stolfo, Shlomo Hershkop, Chia-Wei Hu, Wei-
Jen Li, Olivier Nimeskern, Ke Wang (2006). “Behavior-
based modeling and its application to Email analysis”. ACM
Transactions on Internet Technology (TOIT), v.6 n.2, pp.
187-221.

[7] Salvatore J. Stolfo, Shlomo Hershkop, German Creamer,
Ryan Rowe (2007). “Automated social hierarchy detection
through email network analysis”. In Proceedings of the 9th
WebKDD and 1st SNA-KDD 2007 workshop on Web
mining and social network analysis, San Jose, California,
pp. 109-117.

[8] Gabor Cselle, Keno Albrecht, Roger Wattenhofer (2007).
“BuzzTrack: Topic Detection and Tracking in Email”. In
Proceedings of the 12th international conference on
Intelligent user interfaces, Honolulu, Hawaii, USA, pp. 190
– 197.

[9] Mark Crispin, Kenneth Murchison (2002). “Internet Draft:
IMAP THREAD”. http://www.jwz.org/doc/draft-ietf-
imapext-thread-12.txt.

[10] B. Klimt, Y. Yang (2004). “Introducing the enron corpus”.
In First Conference on E-mail and Anti-Spam (CEAS).

680680

