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Abstract Resampling forgery generally refers to as the technique that utilizes interpola-
tion algorithm to maliciously geometrically transform a digital image or a portion of an
image. This paper investigates the problem of image resampling detection based on the
linear parametric model. First, we expose the periodic artifact of one-dimensional 1-D)
resampled signal. After dealing with the nuisance parameters, together with Bayes’ rule,
the detector is designed based on the probability of residual noise extracted from resampled
signal using linear parametric model. Subsequently, we mainly study the characteristic of
a resampled image. Meanwhile, it is proposed to estimate the probability of pixels’ noise
and establish a practical Likelihood Ratio Test (LRT). Comparison with the state-of-the-art
tests, numerical experiments show the relevance of our proposed algorithm with detecting
uncompressed/compressed resampled images.
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1 Introduction and contributions

With the development of digital image industry, people can utilize benefits of digital
images which help them modify a photo easily and feasibly. However, some image forgers
maliciously falsify digital images. Thus, it is urgent to propose a digital forensic tool against
malicious image falsification and restore the trustworthiness to digital images. Digital image
forensics can be classified into two categories. One is defined as active forensics, refer-
ring to as digital watermarking. Since the embedding mechanism has to be available and
the credibility of information embedded in the image remains questionable, the widespread
utilization of digital watermarking has been substantially limited. The other is defined
as passive forensics. Different from digital image watermarking, widely-adopted passive
forensics authenticates digital images without any prior information on which forensic
investigators mainly focus(see [8, 27, 31, 32]).

Many methodologies have been proposed for detecting image forgery. Prior to discussion
of image forensics, it should be noted that in this context, we do not categorize steganal-
ysis including LSB replacement and matching (see [35]) into the field of image forgery
detection. Using sensor pattern noise as camera signature, it was proposed to identify the
origin of the acquired image (see [3, 18]). Based on the physical noise model proposed
in [33], the designed detector first identified source camera model by using RAW for-
mat images. Moreover, inspired by this pioneer work, the authors of [23] proposed the
improved noise model for identifying individual source camera device. By investigating the
artifacts of the Color Filter Array (CFA) pattern, authors of [12, 22] distinguished a pho-
tographic image (PIM) from a computer generated (CG) one. In the practical operation of
image forgery, a manipulated image is probably compressed twice. Thus, JPEG double-
compressed detector is also an effective auxiliary tool to authenticate tampered images (see
[7]). To distort the truth, a real object in the digital photo is possibly concealed by forgers.
Thus, it is necessary to propose a forensic tool to detect copy-move or splicing manipulation
(see [1, 4, 11, 17]). Besides, image hashing technique can also help forensic investigators
authenticate manipulated images (see [28]).

1.1 State of the art

To create convincing forged images, a forger needs to use some geometric operations
which require a resampling of pixels. Resampling is a post-camera processing technique.
In general, it is proposed not to classify resampling among the image tempering technique.
However, resampling of pixels is the basis of many forgeries because it is involved in almost
all geometric modification (rotation, resizing, etc. ...). While the evidence of resampling
operation within an image does not necessarily imply that the image has been tempered it
is a very important clue. Thus, resampling detectors play a very important role as an auxil-
iary forensic tool. Additionally, resampling falsification often happens together with other
forgery techniques, for instance, copy-move or splicing forgery. For instance, in order to
enhance the visual realism, splicing and copy-move forgeries often require scaling and/or
rotation operations which requires resampling operation.

To distinguish a resampled and non-resampled image is the subfield of digital image
forensics on which this paper focuses. Forensic methods for exploiting the artifacts of
resampled images can generally be divided into two following fundamental categories:

1. Methods in the first category focus on identifying the linear correlation of resam-
pled images in the spatial domain. Authors of [21] first proposed a linear predictor to
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expose the correlation existing among neighboring pixels of the resampled images by
using Expectation Maximization (EM) algorithm (see [6]). Although EM algorithm was
capable of estimating the linear interpolated parameters, iterative computation costs a
plenty of time. Driven by this pioneer work, it was proposed to analyze the relevance
between the EM detector and the second-derivative one, and design an equivalent accel-
erated and simplified detector in [14]. However, in place of estimating the interpolation
parameters, the fixed parametric predictor indeed improves the efficiency of detection,
yet the detection accuracy can not be guaranteed. The problem of how to strike the
balance between the computation efficiency and estimation accuracy remains open.
Instead of using a single predictor, authors of [15] proposed to use a global predictor
to detect a resized image. Its limitation is that the proposed algorithm can only be used
for detecting resized images excluding other geometric manipulation such rotation or
shearing. In addition, these methods can detect the linear transformation, yet can not
estimate the interpolation period.

2. Methods in the second category investigate the second or high-order derivative signal of
resampled images in the frequency domain. By exploiting the second-derivative algo-
rithm, it was proposed to uncover the periodicity of an interpolated image in [13]. This
method can estimate the interpolation period, yet only applied in the resized images.
By analyzing the variance of the n-th order derivative, it was proposed to expose the
trace of a resampled image in [19]. However, the linear transformation matrix can not
be approximated. Inspired by the algorithm of [13], it was proposed to analyze the
relationship between the rotation angle and the frequency in the spectrum of the image’s
edge map (see [34]). The limitation of rotation forgery detection is that this method
could not be comprehensively used. By using supervised learning method (such as Sup-
port Vector Machine, SVM), it was proposed to detect whether the inspected image was
resampled (see [9, 10]). Although those methods could achieve high detection accu-
racy, supervised statistical learning was time-consuming. In addition, several problems
such as the robustness to training and testing set mismatch remain open. For approx-
imating the linear transformation of an interpolated image, authors of [29] proposed
to analyze the second-derivative signals of the image in both the row and column
directions. Although most of these methods could estimate the linear transforma-
tion matrix and interpolation period, they did not establish the detection performance
statistically.

1.2 Contributions of the paper

First, the proposed approach detects a one-dimensional (1-D) resampled signal and esti-
mates the interpolated period. Second, by uncovering the linear correlation of pixels existing
in an image in the spatial domain, the proposed algorithm authenticates a two-dimensional
(2-D) resampled image. Third, by designing a practical Likelihood Ratio Test (LRT), the
proposed algorithm detects a batch of resampled images, and warrants a prescribed False
Alarm Rate (FAR), and achieves good detection performance. Hence, the main contributions
are the followings:

• To deal with 1-D resampled signal, it is first proposed to extract the residual noise of the
inspected signal using a linear parametric model. Meanwhile, we design the detector
based on the probability of residual noise (or prediction errors).

• By transforming the probability of the residual noise into Fourier spectrum, it is
proposed to establish an estimator for estimating the resampling factor.
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• Based on another linear parametric model, the probability of residual noise extracted
from the inspected image is estimated. Then, we expose the periodic artifact of the
resampled image which can be described as symmetrical bright spots scattering in
Fourier domain.

• To deal with a large scale of resampled images, based on the estimated probability of
residual noise, we propose to design a practical LRT and detect resampled compressed
or uncompressed images.

In this context, it should be noted that we can provide a new approach of detecting
resampled images based on our proposed statistical models. However, we are incapable
of designing an most optimal power test with known statistical properties, which is the
limitation of the proposed algorithm.

1.3 Organization of the paper

This paper is organized as follows. Section 2 first recalls the principle of 1-D signal
resampling. Then, the linear parametric model is proposed for dealing with the nuisance
parameters. Meanwhile, the 1-D resampling detector is introduced. In Section 3, the linear
correlation of a 2-D resampled image is first illustrated. At the same time, it is proposed to
design a test of detecting a single resampled image. Next, Section 4 presents a practical LRT
for detecting a batch of resampled images. Finally, Section 5 presents numerical results of
the proposed detector on real images. Section 6 concludes this paper.

2 One-dimensional signal resampling and its artifact

2.1 Problem statement of one-dimensional signal resampling

In general, resampling can be proceeded by three steps: up-sampling; interpolation; down-
sampling (see details in [20]). Since linear interpolation is widely-adopted, for simplicity
and clarity, it is assumed that the interpolation algorithm studied in the present paper is lin-
ear. In the following paragraph, a simple illustration of the resampling process is displayed
(see Fig. 1).

Without loss of generality, a 1-D discrete signal is created (see Fig. 1a), denoted the
vector x = {x[t]} t ∈ {1, ..., T }, where T denotes the length of the vector. First, by up-
sampling with the factor p, a new up-sampled vector xu = {xu[t]} is generated with the
length p(T − 1) + 1 (see Fig. 1b). In the case of t = 1, 2.., T , xu[p(t − 1) + 1] = x[t]
; otherwise, xu[t] = 0. Second, by convolving the vector xu with a linear low-pass filter
h[t], the interpolated vector xi = {xi[t]}, t ∈ {1, ..., p(T − 1) + 1} is obtained, where
xi[t] = xu[t] ∗ h[t] (see Fig. 1c). Third, by down-sampling with the factor q, a new down-
sampled vector xd = {xd [t]} with the length �p

q
(T −1)+1�, where xd [t] = xi[q(t−1)+1],

t = 1, 2, ..., �p
q
(T − 1) + 1� (see Fig. 1d). Let us denote y = {y[t]} resampled signal

where y ≡ xd . It should be noted that p, q ∈ N
+. Then, it is immediately proposed that the

resampled signal y is described by the following linear equation:

y = B p
q
x (1)

where y = {ym}, m ∈ {1, ..., M}, denoted a resampled signal, x = {xn}, n ∈
{1, ..., N}, denoted an original signal. A M × N linear resampling matrix B p

q
controls the
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Fig. 1 Illustration of resampling 1-D signal by a factor p
q

= 4
3 : (a) 1-D original signal, (b) up-sampled signal

by a factor p = 4, (c) interpolated signal, (d) resampled signal after down-sampling by using a factor q = 3

resampling procedure, including up-sampling, interpolation, and down-sampling.For
instance, the linear resampling matrix B 4

3
(see Fig. 1) takes the form:

B 4
3

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 . . .

0.25 0.75 0 0 . . .

0 0.5 0.5 0 . . .

0 0 0.75 0.25 . . .

0 0 0 1 . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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where B 4
3

has the period 4. Since the linear resampling matrix B p
q

introduces the periodicity,

the resampled signal y owns the period p. Moreover, the expectation of the periodic signal
ym should be linear combination from the neighbouring samples, which is defined by:

ŷm =
L∑

k=−L

αkym+k (2)

where αk denotes the weighted factor with α0 = 0 and 2L (L ∈ N
+) the number of used

neighbouring samples. In the present paper the moments of (2) is not in detail, the interested
reader is referred to [21]. It should be noted that the linear combination (2) can not hold
true in each sample along the signal ym, but only be defined in the interval of p. In the
practical resampling, if an up-sampling factor p set as 1 while a down-sampling factor
q > 1, the resampled signal does not expose the periodicity, and then its expectation can
not be formulated by linear combination (2).

It is proposed to use a linear parametric model to deal with a 1-D resampled signal y. To
this end, the vector y = {y1, . . . , yM }T is defined by:

y ∼ N (μ, σ 2IM) = μ + ε (3)

where μ= (μ1, . . . , μM)T denotes the expectation of y and ε = (ε1, . . . , εM)T denotes resid-
ual noise following the Gaussian model with the variance σ 2IM and IM the identity matrix
of size M×M . Furthermore, μ can be described with the following linear parametric model:

μ = Aω (4)

where A is a known full rank matrix of size M × N , with M > N , and nuisance parameters
ω is a N × 1 vector of describing the expectation of y. In the present paper, the matrix A
can be described as:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 . . . aL aL+2 . . . a2L+1
a2 . . . aL+1 aL+3 . . . a2L+2
...

. . .
...

...
. . .

...

am . . . aL+m−1 aL+m+1 . . . a2L+m

...
. . .

...
...

. . .
...

aM−2L . . . aM−L−1 aM−L+1 . . . aM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where m denotes an index of each column vector and 2L a number of used neighbour-
ing samples, with M > 3L. It should be noted that the expectations of the first and last
L samples are not considered in our proposed model. In practice, y denotes an observation
of a.

The idea of using such a linear parametric model [5, 22, 36] is that it allows an easy
elimination of nuisance parameters. To apply this theory, let us define C (A) ⊆ R

M the
column space spanned by A, with dim (C (A)) = rank (A) = N and C (A)⊥ ⊆ R

M−N its
orthogonal complement, sometimes referred to as the “parity space”, with dim (C (A)⊥) =
M − N . The projection of observation vector y onto the parity space C (A)⊥ is obtained by
n = Wy where the matrix W verifies, among others, the following useful properties:

WA = 0 and WWT = IM−N . (5)

Hence, the projection of observation vector y onto the parity space C(A)⊥ yields: n =
Wy = Wε ∼ N (0, σ 2IM−N). Note that the use of projection matrix W can be replaced
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by using the Maximum Likelihood Estimation (MLE). By rejecting the nuisance parameter,
let us define the estimation of n as

n̂ = y − A(AT A)−1AT y. (6)

Since the resampled samples are interpolated from their neighbourhood non-resampled
samples, the residual noise obtained from the difference between the resampled samples
and their estimation approximately follows the Gaussian distribution with zero expectation.
To verify the effectiveness of our proposed model, the simulated experiment is illustrated.
A set of random variables of 1000 samples, referring to as the original signal, is generated.
Then, by using a resampling factor (RF) p

q
= 2

1 , the resampled signal is obtained (see
Fig. 2a). Based on our proposed linear parametric model, the residual noise of resampled
signal is acquired, which can be fitted by using the Gaussian distribution (see Fig. 2b).
Similarly, it is also proposed to give the empirical results from the residual noise of original
signal and its Gaussian model fitting (see Fig. 2c). Obviously, the resampled residual noise
fits the Gaussian model better, which verifies our proposed assumption that residual noise
of resampled signal approximately follows the Gaussian distribution. By contrast, it hardly
holds true that the residual noise of original signal follows the Gaussian distribution.1

2.2 Exposing one-dimensional signal resampling

Based on the linear parametric model, the extracted residual noise denoted n = {ni} i ∈
{1, ..., I } follows the Gaussian distribution (see Fig. 2b). For simplifying the calculation, it is
assumed that the residual noise from non-resampled/original signal is uniformly distributed
(see [21]). Thus, the problem of detecting between the original and resampled signal can be
formulated by the following two hypotheses:

{
H0 ={ni ∼ U (nmin, nmax)),∀i =(1, ..., I )},
H1 ={ni ∼ N (0, σ 2), ∀i =(1, ..., I )}, (7)

where under hypothesis H0, the residual noise of the inspected signal follows the Uni-
form distribution; under hypothesis H1, the residual noise is normally distributed with zero
expectation and σ 2 variance. It is noted that nmin denotes the minimum value of the noise
and nmax the maximum value, assuming that nmin �= nmax .

Then, by using Bayes’ rule, let us immediately denote the conditional probability of each
noise sample from the resampled signal by:

Pr{ni ∈ H1 | ni} = Pr{ni | ni ∈ H1} Pr{ni ∈ H1}∑1
k=0 Pr{ni | ni ∈ Hk} Pr{ni ∈ Hk}

, (8)

where it is assumed that the priors Pr{ni ∈ H0} and Pr{ni ∈ H1} are both equal to 1
2 . Then

(7) is rewritten as follows:
⎧⎨
⎩

Pr{ni | ni ∈ H0} = 1
nmax−nmin

Pr{ni | ni ∈ H1} = 1√
2πσ 2

exp

(
−n2

i

2σ 2

)
.

(9)

1In fact, it is very difficult to assume the accurate distribution model of the original signal without any prior
information. In this context, we arbitrarily assume the original signal approximately follows the Uniform
distribution in the designed test, which is the limitation of our proposed algorithm.
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Fig. 2 Illustration of resampled signal with RF = 2 and statistical distributions of the residual noise
(resampled and original version)

where in the practical detection, the variance σ 2 can be replaced by its estimate σ̂ 2 by using
MLE as follows:

σ̂ 2 = 1

I − 1

I∑
i=1

(ni − 1

I

I∑
i=1

ni)
2, (10)

where I denotes the total number of the pixels.
It is proposed to use the frequential representation of the probability of resampled

residuals, denoted N and formally defined as follows:

N=|h ∗ |f [Pr{n ∈ H1 | n}]| |, (11)

where a vector h = [1/4, 1/4, −1, 1/4, 1/4] denotes a 1-D high-pass filter, f [·] represents
the calculation of 1-D Discrete Fourier Transform (DFT). It should be noted that the high-
pass filter aims at removing the lower frequential components for better visually displaying.
Due to the periodical artifact caused by resampling operation, the spike-like peak value
appears in the frequency domain which is the most distinctive artifact of the resampled
signal (see Fig. 3b and c).

To verify the effectiveness of our proposed algorithm, it is proposed to compare the
original signal with the resampled one by using different RFs. As Fig. 3 illustrates, the
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Fig. 3 N (frequential representation of the probability) comparison of residual noise between original and
resampled signal in Fourier domain, (a) original signal, (b) resampled signal by a factor p

q
= 4

1 , (c) resampled

signal by a factor p
q

= 4
3 , (d) resampled signal by a factor p

q
= 1

2

resampled signal (see Fig. 3b and c) exposes the obvious peaks in the frequency domain, but
the original signal (see Fig. 3a) has nothing. Moreover, surprisingly, the resampled period
is accurately estimated by:

T̂ = 1

fp

(12)

where T̂ denotes the estimated period or interpolated rate of the resampled signal, which
equals to the up-sampled factor p. fp is the normalized frequency, corresponding to the
position of the first peak in Fourier domain. By counting the number of the local peaks with
a threshold τ1, we can design a test of detecting a resampled signal.

It should be noted that our proposed algorithm can not differentiate between two resam-
pled signals by using the same up-sampled factor. For instance, the peaks associated with
a resampled factor 4

1 (see Fig. 3b) appears similar to those by a resampled factor 4
3 (see

Fig. 3c). In addition, in the case of the resampled signal by an up-sampled factor p = 1,
where it has no obvious peaks (see Fig. 3d), it can not be distinguished with the original sig-
nal. In this case, each sample of the resampled signal exposes no periodic linear correlation
with its neighbouring ones. Thus, our proposed algorithm is invalid.
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3 Two-dimensional signal resampling and its artifact

In this section, inspired by extracting the artifact of the 1-D resampled signal (11), we can
extend the algorithm from a 1-D signal to a 2-D image straightforward. Compared with a
1-D resampled signal, a 2-D resampled image has more complex linear correlation. A 1-D
signal is interpolated by one direction, but a 2-D image is interpolated by the horizontal and
vertical direction simultaneously. When a 2-D image is resampled only by the horizontal
or vertical direction, it will cause the image visual distortion, which is not discussed in this
context.

3.1 Problem statement of two-dimensional signal resampling

Similarly, a procedure of resampling a 2-D image has three steps: up-sampling by the
horizontal and vertical direction; interpolation by two directions; down-sampling by two
directions. Then similar to the linear combination of 1-D signal, each pixel intensity of the
resampled 2-D image correlates to its surrounding ones. Next, let us denote an original grey-
level image as X = {xi,j } i ∈ {1, ..., I }, j ∈ {1, ..., J }, where I and J denote the height
and the width of the matrix X. The case of color image with three channels can be obtained
straightforward.

Let us denote the linear correlation between each pixel sample and its neighbouring ones
by the following:

xi,j =
L∑

p=−L

L∑
q=−L

αp,qxi+p,j+q (13)

where αp,q denotes a weighted factor with the case of α0,0 = 0, (2L + 1)2 − 1 (L ∈ N
+)

the number of used neighbouring samples, xi,j i ∈ {2, ..., I − 1}, j ∈ {2, ..., J − 1} denotes
a pixel intensity. Enlarging L the range of neighbouring indeed improves the accuracy of
describing the linear correlation, but at the cost of high computation. For simplicity, L = 1
is a good tradeoff between complexity and accuracy. Then let us rewrite a resampled image
X = {xj }, the vector xj = {x2,j , ..., xI−1,j }T , where j ∈ {2, ..., J − 1}. Immediately, it
is proposed to use a linear parametric model to deal with the 2-D image. To this end, the
vector xj is defined:

xj ∼ N (μj , σ
2
j II−2) = μj + nj (14)

where μj = (μ2, . . . , μI−1)
T denotes the expectation, each Gaussian-distributed column

vector nj = (n2, . . . , nI−1)
T takes variance σ 2

j II−2 and II−2 the identity matrix of size
(I − 2) × (I − 2). Furthermore, μj can be described with the following linear parametric
model:

μj = Ajαj (15)

where Aj is a known full rank matrix of size (I − 2) × 8, with I > 10, and αj = {αp,q}
where index (p, q) ∈ {−1, 0, 1} excluding (0,0) is a 8 × 1 vector describing the expectation
of xj . Then, similar to (6), let us define the estimation of nj as

n̂j = xj − x̂j = xj − (Aj (AT
j Aj )

−1AT
j )xj . (16)

Note that in the present paper, the chosen linear parametric model dealing with the 2-D
image is the following matrix Aj :

Aj =
[
x(−1,−1)
j , x(−1,0)

j , x(−1,1)
j , x(0,−1)

j , x(0,1)j , x(1,−1)
j , x(1,0)j , x(1,1)j

]
(17)
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where a matrix X(p,q) ={x(p,q)
j }, each column vector x(p,q)

j ={x2+p,j+q, ..., xI+p−1,j+q}T ,
where j ∈ {2, ..., J − 1} and index (p, q) ∈ {−1, 0, 1} not including (0,0).

3.2 Exposing two-dimensional signal resampling

By using the linear parametric model, the residual noise can be extracted from an inspected
image. Let us denote N = {n2, ..., nJ−1} residual noise in which each residual column
vector nj = {ni,j }, i ∈ {2, ..., I − 1}. Thus, the problem of detecting between the non-
resampled and resampled image can be formulated by the following two hypotheses:

{
H0 ={ni,j ∼ U (−255, 255)),∀i =(2, ..., I − 1)},
H1 ={ni,j ∼ N (0, σ 2

j ), ∀i =(2, ..., I − 1)}, (18)

where j ∈ {2, ..., J − 1}, under hypothesis H0, the residual noise of the non-resampled
image follows the Uniform distribution;2 under hypothesis H1, the residual noise of the
resampled image is normally distributed with zero mean and σ 2

j variance. Besides, it should
be noted that due to the pixel intensity of a gray-level image ranging from 0 to 255, residual
noise (difference between the pixel’s intensity and its expectation value) falls in the range
from -255 to 255. Then, by using Bayes’ rule, let us immediately denote the conditional
probability of each residual sample:

Pr{ni,j ∈H1 |ni,j }= Pr{ni,j |ni,j ∈H1} Pr{ni,j ∈H1}∑1
k=0Pr{ni,j |ni,j ∈Hk}Pr{ni,j∈Hk}

, (19)

where it is assumed that the priors Pr{ni,j ∈ H0} and Pr{ni,j ∈ H1} are both equal to 1
2 .

Then (18) is rewritten as follows:
⎧⎨
⎩

Pr{ni,j | ni,j ∈ H0} = 1
510 ,

Pr{ni,j | ni,j ∈ H1} = 1√
2πσ̂ 2

j

exp

(−n2
i,j

2σ̂ 2
j

)
,

(20)

where the variance σ̂ 2
j can be estimated by using MLE as follows:

σ̂ 2
j = 1

I − 3

I−1∑
i=2

(ni,j − 1

I − 2

I−1∑
i=2

ni,j )
2, (21)

where I denotes the total number of pixels in each column j .
Then it is proposed to use the frequential representation of the probability of residual

noise, denoted N2D and formally defined as follows:

N2D =|H ∗ |F [Pmap]| |, (22)

where H denotes a 2-D high-pass filter, F [·] represents the calculation of 2-D DFT. Pmap =
{Pr{ni,j ∈H1 |ni,j }} , i ∈ {2, ..., I − 1}, j ∈ {2, ..., J − 1} denotes the so-called probability
map.

A 2-D resampled image exposes bright spots surrounding the central spot (similar to
peaks in the 1-D signal) distributed symmetrically in Fourier domain, which is the critical

2In fact, it is very difficult to accurately define the distribution of the residual noise from a non-resampled
image. Here, it is proposed to arbitrarily approximate its distribution using the Uniform distribution inspired
by the reference [21].
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Fig. 4 A flowchart of the proposed algorithm

resampling artifact of a resampled image. Due to the fact that the interpolated pixel obtained
from its neighbourhood pixels, the periodic characteristic is uncovered unavoidably in the
frequency domain. Therefore, the symmetric bright spots appear in Fourier domain when
an image is resampled. Based on the assumed distributions (18), together with hypothe-
sis theory, we can establish a practical LRT of detecting a resampled image. The specific
discussion will be extended in the following section.

4 Design of the practical LRT for resampling detection

Prior to our proposed algorithm in this paper, some state-of-the-art methods confine their
ideas to detection of the peak values (bright spots) in Fourier domain. Namely, by counting
the number of bright spots, the designed test detects if the inspected image is resampled.
Therefore, that proposed test has to estimate the suitable threshold for selecting bright spots
existing in the Fourier domain (see [14, 21]). However, since some post-camera3 operations
such as compression possibly generate some bright spots which are not caused by image
resampling. That will to some extent impact the detection accuracy of that prior-art test.

In this section, it is proposed to solve the problem of resampling detection by designing
a practical LRT, which has been verified to be a very effective algorithm in [23–26]. A
flowchart of the proposed algorithm is illustrated in Fig. 4. By using a linear parametric
model, residual noise can be extracted from the inspected image. Based on the statistical
distributions of residual noise under two hypotheses, it is proposed to design a practical LRT.
In this practical LRT, we first estimate the unknown parameter, and meanwhile calculate the
LR, and finally detect the inspected image based on the given threshold.

For solving the statistical detection problem (18), it follows from the Neyman-Pearson
lemma [16, Theorem 3.2.1] that the LRT is optimal in the sense described below. For
definition, let

Kα =
{

δ : sup
σj

PH0 [δ(N) = H1] ≤ α

}
(23)

3The term post-camera is referred to as the operation after acquiring a digital image.
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be the class of tests, solving problem (18), with an upper-bounded FAR α. Here PHj
[·]

is the probability under Hj , j ∈ {0, 1}, and the supremum over model parameter σj can
be understood as the distribution parameter ensuring that the FAR α can not be exceeded.
Among all tests in Kα the LRT is the most powerful test, it maximizes the detection power:

βδ = PH1 [δ(N) = H1]. (24)

In the practical test, parameter σj is unknown which can be successfully estimated by
using MLE (see (21)). Afterwards, we can establish our proposed practical LRT for detect-
ing resampled images. Based on the probability density function (pdf) of hypothesis H0
and H1 (20), the Likelihood Ratio (LR) value for the i-th pixel-wise on j -th column vector
is given by:

	i,j (ni,j ) = Pr{ni,j |ni,j ∈H1}
Pr{ni,j |ni,j ∈H0} = 510

σ̂j

√
2π

exp

(−n2
i,j

2σ̂ 2
j

)
. (25)

Then, it follows from the statistical independence of vectors ni,j that the practical LRT for
all the pixel intensities is given by:

δ(N) =
{

H0 if 	(N) = ∑J−1
j=2

∑I−1
i=2 log(	i,j ) ≤ τα

H1 if 	(N) = ∑J−1
j=2

∑I−1
i=2 log(	i,j ) > τα

(26)

where the column index j ∈ {2, ..., J − 1} in which J denotes the total number of columns,
and the decision threshold τα is the solution of equation P0[	(N) > τα] = α to guarantee
that δ(N) ∈ Kα .

5 Experiments

5.1 Performance comparison on single resampled image

To verify the sharpness and effectiveness of our proposed methodology, numerical exper-
iments are illustrated in this section. Prior to our experiments, it is proposed to randomly
choose some images from the image database [30], in which all 1338 RAW format images
with size 512 × 384 are converted to TIFF format or JPEG format with different quality
factors.

Figure 5 illustrates the results from resampled images by using bilinear interpolation.
Compared with the single bright spot from an original image (see Fig. 5c), the up-sampled
image with RF equal to 150 %, has a series of bright spots symmetrically surrounding
the central point in Fourier domain (see Fig. 5f). It is observed that with increasing the
up-sampled factor, the distance between two spots horizontally or vertically is enlarged.
This interesting phenomenon is very similar to the pattern of the distance between sym-
metric peaks in Fourier domain of the 1-D resampled signal. The results of down-sampled
images are displayed in Fig. 5l. Compared to the results of up-sampled images, the bright
spots surrounding the central point are not very obvious. Let us attribute that characteristic to
that down-sampled images lose more information of linear correlation among neighborhood
pixels than those of up-sampled images. Thus, it is more difficult to detect a down-sampled
image.

Next, it is proposed to detect a rotated image. Similarly, it can be observed that surround-
ing bright spots are scattered in Fourier domain (see Fig. 6). Finally, Fig. 7 illustrates the
experimental results from another affine transformation. Numerical experiments verify that
our proposed algorithm indeed is capable of detecting a resampled image. Besides, we can
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(e) (f)

(b) (c)

Fig. 5 Left-most column: comparison between an original image and its corresponding resampled ones
(bilinear interpolation); middle column: its corresponding Pmap’s; right-most column: periodic resampling
artifacts in Fourier domain

modify the high-pass filter H for enhancing the difference between the bright spot and its
surrounding nuisance noise in order to make peak values more visible.

5.2 Performance comparison on batch of resampled images

To verify our proposed test in a large scale of images, it is proposed to give the experimen-
tal performance of our detector for processing a batch of inspected images. We establish an
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(a)

(d) (e) (f)

(b) (c)

Fig. 6 Left-most column: comparison between an original image and its corresponding resampled one
(bilinear interpolation); middle column: its corresponding Pmap’s; right-most column: periodic resampling
artifacts in Fourier domain

image database of 200 uncompressed gray-level images, which is randomly chosen from
Bossbase database [2]. In the following experiments, three practical interpolation meth-
ods for image resizing, that are bilinear, bicubic, nearest-neighbor, are used for verifying

(a)

(d) (e) (f)

(b) (c)

Fig. 7 Left-most column: comparison between an original image and its corresponding resampled one (bicu-
bic interpolation); middle column: its corresponding Pmap’s; right-most column: periodic resampling artifacts
in Fourier domain
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Fig. 8 ROC curves comparison by detecting up-sampled images where the legend denotes the resampling
factor (RF)

the effectiveness of our proposed algorithm. It should be noted that our proposed test can
still detect other image re-scaling techniques like rotation or shearing. As Fig. 8 illustrates,
by using bilinear or nearest-neighbor algorithm for resampling, our detector performs its
ability to detect resampled images with small RFs. When nearest-neighbor is applied for
interpolating, even resampled images with RF equal to 105 % can be easily detected at
the cost of very small FAR. Compared with bilinear or nearest-neighbor, since bicubic
partly destroys the correlation of pixels existing in the resampled image, the performance
of the detector is degraded. Besides, with increasing RF, the performance of our detector
is improved largely. Therefore the larger RF is, the more stronger correlation among pixels
exists.

Apart from detecting resampled uncompressed images, our proposed detector is capa-
ble of detecting resampled compressed images. It is proposed to use dataset one consisting
of 500 uncompressed non-resampled images and 500 compressed resampled images. After
resampling original uncompressed images by using RF from 75 % to 150 %, all the resam-
pled images are saved as JPEG format with Quality Factor (QF) from 50 to 90 (see Table 1).

Table 1 Detection performance comparison at the given FAR ατ = 0.05 by detecting resampled once-
compressed images in dataset one

50 55 60 65 70 75 80 85 90

150 % 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

140 % 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

130 % 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

120 % 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99

110 % 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.97 0.92

95 % 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.93 0.84

90 % 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.94 0.85

85 % 1.00 1.00 1.00 0.99 0.99 0.99 0.97 0.92 0.81

80 % 1.00 1.00 0.99 0.99 0.98 0.97 0.96 0.91 0.80

75 % 0.99 0.99 0.99 0.98 0.97 0.95 0.92 0.85 0.70

Average 0.999 0.999 0.998 0.996 0.994 0.989 0.980 0.952 0.891
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Fig. 9 ROC curves comparison by detecting resampled double-compressed images in dataset two

By increasing QF, JPEG compression nearly does not impact our detection power. Besides,
by using different RFs (>100 % or <100 %), our proposed detector performs at the similarly
equivalent level. In addition, it is proposed to use dataset two consisting of 500 com-
pressed non-resampled images with QF 75 and 500 double-compressed resampled images.
After resampling original compressed images by using RF 105 % and 95 %, all resampled
images are saved as JPEG format with QF from 70 to 90 (see Fig. 9). Although double-
compression operation to some extent impacts the detection accuracy, the proposed detector
performs well by considering its detection rate at the given false alarm rate. Finally, it is pro-
posed to design dataset three consisting of mixed 2000 images which includes 1600 JPEG
images with different QFs and 400 uncompressed images. In our experiment, half of this
mixed dataset is resampled with RF from 80 % to 120 % while the other half is not resam-
pled. As Fig. 10 illustrates, at the very low FAR, the detection performance of the proposed
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Fig. 10 ROC curves comparison by detecting resampled compressed or uncompressed images in dataset
three
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Table 2 Detection performance (true positive rate) comparison under two hypotheses between H0 and H1
at the given FAR ατ ; the proposed test δ (26) designed by using three algorithms; the interpolation algorithm
is bilinear

Resampling factor Linear model (15) Fixed pattern [14] EM algorithm [21]

(a) ατ = 0.05

200 % 1.00 1.00 0.71

150 % 0.95 0.86 0.43

140 % 0.81 0.72 0.34

130 % 0.69 0.61 0.28

120 % 0.57 0.51 0.24

110 % 0.41 0.39 0.19

95 % 0.52 0.46 0.07

90 % 0.54 0.45 0.07

85 % 0.53 0.43 0.08

80 % 0.53 0.42 0.09

Average 0.67 0.59 0.25

(b) ατ = 0.1

200 % 1.00 1.00 0.79

150 % 0.98 0.91 0.55

140 % 0.91 0.80 0.44

130 % 0.81 0.73 0.40

120 % 0.69 0.62 0.35

110 % 0.56 0.51 0.29

95 % 0.64 0.57 0.13

90 % 0.68 0.57 0.15

85 % 0.68 0.57 0.18

80 % 0.69 0.57 0.18

Average 0.76 0.69 0.35

detector achieves the relevant level. Besides, the resampled images with RF larger than one
can be detected more accurately than the images with RF smaller than one. Because resam-
pled images with larger RF has more correlated information existing among pixels than
images with smaller RF. Meanwhile, resampling detection in the mixed dataset verifies that
our designed test can detect resampled images with mixed compressed and uncompressed
format.

In practice, the periodic blocking artifact of the JPEG format image possibly collides
with the periodic trace of the resampled image. Therefore, when a batch of resampled JPEG
format images are inspected, it is very difficult to authenticate whether the periodic pattern is
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Table 3 Comparison of computation time (second) for each inspected image; the interpolation algorithm is
bilinear

Resampling factor Linear model (15) Fixed pattern[14] EM algorithm [21]

200 % 0.0996 0.0488 2.2354

150 % 0.0928 0.0449 1.9323

140 % 0.0827 0.0482 2.3860

130 % 0.0953 0.0485 2.0290

120 % 0.0937 0.0538 1.9387

110 % 0.1012 0.0516 2.0494

95 % 0.0808 0.0477 2.1660

90 % 0.0759 0.0430 1.8757

85 % 0.0717 0.0426 1.6390

80 % 0.0622 0.0379 1.5356

Average 0.0856 0.0467 1.9787

from the blocking artifact or the resampling artifact. Since the artifact is denoted as the only
benchmark to detect a batch of images, those artifact-based detectors could not solve this
tough problem. In our proposed algorithm, the practical LRT does not use the resampling
artifact directly, but instead the ratio of the probability of residual noise, which effectively
deals with the problem caused by JPEG compression.

5.3 Performance comparison with state-of-the-art competitors

Some state-of-the-art designed tests based on the bright spots, which are caused by the
periodic characteristic of interpolation, have been proposed to detect a batch of resampled
images (see [14, 21]). However, in this present paper, it is proposed to design a practical
LRT for solving the problem of image resampling detection. To compare our proposed
detector with the prior arts, in our following experiments, it is proposed to design three
different LRTs based on estimated residual noise ni,j of an image by using the following
algorithms: our proposed linear parametric model (15); EM algorithm proposed in [21]; the
fixed parameter pattern4 proposed in [14]. Then, let us compare the detection performance
of the designed practical LRT based on three different algorithms. We use all TIFF format
images from the image database [30], which are resampled by using bilinear algorithm with
6 different RFs.

Table 2 illustrates the comparison of the detection performance at the give FAR ατ =
0.05 or 0.1. With increasing RF, the detection performance of three practical LRTs is
improved. Moreover, in the case of using all 6 RFs, the practical LRT designed by the lin-
ear model outperforms the other two practical LRTs using prior-art algorithms [14, 21].
Besides, it should be noted that the performance of the practical LRT designed by our pro-
posed linear model achieves 100 % at the given RF equal to 200 %, as well as the practical

4The fixed pattern can be described as αj = (0.5, 0.5, 0.5, 0.5, -0.25, -0.25, -0.25, -0.25)T, where αj denotes
the weighted factors (see (15)).
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LRT established by using a fix pattern. We also compare the computation efficiency of the
designed practical LRTs based on three algorithms, which is illustrated in Table 3. It can be
observed that the LRT designed by the fix pattern performs best due to that the fixed pattern
need not estimate the parameters. Since EM algorithm needs iterative computation, the LRT
based on it performs less efficiently than two other designed LRTs. Hence, by considering
the detection accuracy and computation efficiency, our proposed LRT based on the linear
parametric model is the optimal choice.

6 Conclusion and discussion

This paper first studies the linear correlation of 1-D resampled signals. By using a linear
parametric model, together with the Bayes’ rule, we propose the algorithm of uncovering
the resampling artifact. Numerical experiments verify that our proposed algorithm is capa-
ble of distinguishing between non-resampled signal and resampled one. Meanwhile, the
up-sampled factor of a resampled 1-D signal can be estimated accurately. Moreover, it is
proposed to use another linear parameter model and design a test of detecting a resam-
pled image, whose artifact is described as bright spots in Fourier domain. In the case of
detecting a batch of images, based on the probability of residual noise extracted from a
non-resampled and resampled image respectively, it is proposed to design the practical LRT
detector. To compare with LRTs designed by using the prior-art algorithms [14, 21], our
proposed practical LRT performs best.

To the best of our knowledge, our designed LRT-based detector is the first test based
on hypothesis testing theory for image resampling detection. It can achieve the maximal
detection power at the prescribed FAR. Besides, our detector can deal with the problem of
authenticating the resampled images from mixed compressed and uncompressed images.
In this context, the Uniform distribution describing a non-resampled image is not very
accurate. It can be replaced by the more accurate generalized model, which will be studied
in the future works.
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