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Abstract. Urban flow prediction plays an essential role in public safety and traf-
fic scheduling for a city. By mining the original granularity flow data, current
research methods could predict the coarse-grained region flow. However, the pre-
diction of a more fine-grained region is more important for city management,
which means cities could derive more details from the original granularity flow
data. In this paper, given the future weather information, we aim to predict the
fine-grained region flow. We design Weather-affected Fine-grained Region Flow
Predictor (WFRFP) model based on the super-resolution scheme. Our model con-
sists of three modules: 1) Key flow maps selection module selects key flow maps
from massive historical data as the input instance according to temporal property
and weather similarity; 2) Weather condition fusion module processes the original
weather information and extracts weather features; 3) Fine-grained flow predic-
tion module learns the spatial correlations by wide activation residual blocks and
predicts the fine-grained region flow by the upsampling operation. Extensive ex-
periments on a real-world dataset demonstrate the effectiveness and efficiency of
our method, and show that our method outperforms the state-of-the-art baselines.

Keywords: Deep Learning · Spatio-Temporal Data · Prediction.

1 Introduction

The urban flow prediction system is crucially essential to urban planning, public safety
and various applications such as bike-sharing platforms. The current research meth-
ods could approximate the future urban flow [22,21]. However, their predicting area
is coarse due to the limitation of sparse sensors deployed over the city. Predicting the
fine-grained region flow (e.g., crowd flow and traffic flow) under the future weather
conditions is important for a city, which can improve traffic management and guarantee
public safety.

For instance, as shown in Fig. 1 left, the area is divided into 8×8 grid regions, and
we can only obtain the flow of the coarse-grained regions (e.g., R1) from the sensors
deployed over the city. For bike-sharing platforms like Hellobike and Mobike, they
launch bikes based on the crowd flow of regionR1. However, regionR1 is large and the
crowd flow is unevenly distributed. Magnifying region R1, we will find that the crowd
flow is more concentrated in fine-grained region r1 (outdoor region) on a sunny day,
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but more concentrated in region r2 (indoor region) on a cloudy day. If people could
predict the fine-grained regions flow (e.g., r2) with future weather conditions, bike-
sharing platforms could allocate bike resources reasonably and provide better service
for consumers.

R1

r2
R3

R4

R2

r1

Fig. 1. Left: an area is divided into 8×8 coarse-grained grid region. We can obtain coarse-grained
crowd flow of each region by CCTVs and loop detectors. Right: the corresponding fine-grained
grid regions of region R1. We aim to predict the crowd flow of a more precise region (e.g., r1).

In this paper, our goal is predicting the spatially fine-grained flows from the ob-
served coarse-grained data when the future weather condition is given. Predicting the
weather-affected fine-grained region flow means to explore the relationship between
the flow distribution and the weather, and reduce the scope of the predicting area to
obtain details from coarse-grained flow. However, the prediction is challenging due to
the following complex factors:

– Redundant Input Data. For the weather-affected fine-grained region flow predic-
tion problem, the input will be a very long historical data sequence, which is diffi-
cult for model training. Besides, some historical data is less relevant to the future
weather condition, and even bring negative impact for prediction.

– Spatial Dependencies. On one side, the flow of a region can be affected by the
surrounding regions. A shown in Fig. 1, the outflow from region R1 affects the re-
gion flow of R2 and R3. Likewise, outflows from surrounding regions and distant
regions (e.g., R4) will affect the flow of region R1. On the other side, the corre-
sponding fine-grained flow distribution of a coarse-grained region will change over
time and weather conditions.

To tackle these challenges, we propose a deep neural network model, Weather-
affected Fine-grained Region Flow Predictor (WFRFP), which could predict the fu-
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ture fine-grained region crowd flow when the future weather condition is available.
WFRFP is inspired by the solutions for single image super-resolution (SISR) problem
[3,10,12], which aims at the recovery of a high resolution (HR) image from its low
resolution (LR) counterpart. Solutions for SISR problem have motivated applications
in other fields, such as satellite [15], medical imaging [17], meteorology [14] and flow
inferring [11]. Particularly, Liang et al. [11] firstly proposed the fine-grained urban flow
inferring model, which maps coarse-grained flow to fine-grained flow based on super-
resolution scheme. Please note that our work is different from the work of Liang et al.
[11]. The work of Liang et al. aims to use the flow data that has already been obtained
to learn high-resolution mapping, while our work aims to predict the future fine-grained
flow from massive historical flow data according to the future weather condition.

In this paper, we adopt the similar idea of SISR and design an appropriate model
to predict the weather-affected fine-grained region flow. Specifically, WFRFP first se-
lects weather-similar and time-series data, and then learns weather features and spatial
features from these data. Finally, it performs the upsampling operation to obtain the
fine-grained region flow. Our contributions are as follows:

– We present the idea to predict the weather-affected fine-grained region flow. And
we design the WFRFP model, which can capture weather and spatial impacts on
crowd flow, and predict the fine-grained region flow of a more precise region.

– We design a method to select key flow data from massive historical data, which both
remains time-series property and has high a correlation with the future weather con-
dition. Our structure reduces the amount of data input while improving the training
efficiency.

– We performed experiments and evaluate our framework on a real-world dataset
with baselines. And the experimental results proved that our method is superior to
other baseline methods.

The rest of this paper is organized as follows. In Section 2, we define notations
and formalize the problem of weather-affected fine-grained region flow prediction. In
Section 3, we introduce our prediction method in detail. In Section 4, we show the
process and the algorithm of model training. In Section 5, we describe our experiment
settings and analyze the experimental results. Section 6 reviews the related work and
Section 7 concludes our work.

2 Formulation

In this section, we first define notations in this paper and then formulate the problem
of Weather-affected Fine-grained Region Flow Prediction (WFRFP). We give the no-
tations used in this paper in Table 1.

Definition 1 (Region) As shown in Fig. 1, given the latitude and longitude of an
area of interest (e.g., a city, a district, etc.), we divide it into an I × J grid map. Each
grid corresponds to a region [21]. Partitioning the city into smaller regions suggests
that we can obtain flow data with more details, which produces a more fine-grained
flow map.
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Table 1. Notations and meanings

Notations Meanings
Ct the coarse-grained flow map at t-th time slot
Ft the fine-grained flow map at t-th time slot
Mt the weather condition at t-th time slot
m(q,i) the q-th weather variable of a weather condition at t-th time slot
N the upsampling factor
Mc the coarse-grained weather feature map
Mf the fine-grained weather feature map
mcon vector of continuous weather variables
mdisc vector of discrete weather variables
C the set of historical coarse-grained flow maps
M the set of historical weather conditions

Definition 2 (Flow Map) Each divided grid region has a certain region flow, and
we define flow maps to describe the flow distribution in grid regions. Let Ct ∈ RI×J+

represent a coarse-grained crowd flow map at the t-th time slot. R+ denotes the flow
class (e.g., crowd flow, traffic flow, etc.). Given an upsampling factor N , we represent
a fine-grained crowd flow map at the t-th time slot as Ft ∈ RNI×NJ+ . Fig. 2 shows
an example when upsampling factor N is 2. Each coarse-grained grid in Fig. 2 left is
divided into 2×2 fine-grained grids in Fig. 2 right.

Definition 3 (Weather Condition) Let Mt represents the weather condition at the
t-th time slot. Each Mt contains several weather variables m. According to whether
the value of the variable is continuous, we divide those weather variables into two cate-
gories: discrete and continuous weather variables. Continuous weather variables include
temperature, rainfall and wind speed. Discrete weather variables include weather cate-
gories (e.g., sunny, cloudy) and time information. We will process those variables into
an embedding vector for model training.

Fig. 2. An example when upsampling factor N is 2. Left: a 32×32 coarse-grained flow map.
Right: a 64×64 fine-grained flow map. Each coarse-grained grid is divided into 2×2 fine-grained
grids.

Problem Statement (WFRFP) Given the historical coarse-grained region flow
maps C = {C0,C1, · · · ,Ct}, the historical weather conditionsM = {M0,M1, · · · ,Mt},
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the future weather condition Mt+∆t and an upsampling factor N , predict the future
fine-grained region crowd flow map Ft+∆t.

3 Methodology of WFRFP Model
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Fig. 3. The architecture of our model. Our model consists of three modules: key flow maps selec-
tion module, weather condition fusion module and fine-grained flow prediction module.

Fig. 3 shows the architecture of our model, which consists of the following three
parts: key flow maps selection, weather condition fusion and fine-grained flow predic-
tion.

Key flow maps selection. This part aims to select key flow maps from the massive
historical data as the input sequence for model training. Our method depicts temporal
correlations by time-series method, and takes the impact of the future weather condition
into account by selecting weather-similar flow data, which reduces the amount of data
input and improves training efficiency.

Weather condition fusion. Original weather condition information cannot be fed
to neural networks directly, thus we process original information before model training.
We first transform weather variables into low-dimension vectors, and then we obtain
weather feature maps though weather feature extraction network. The weather feature
maps will be concatenated with the key flow maps as the input for model training.

Fine-grained flow prediction. This module learns the spatial correlations and pre-
dicts the fine-grained region flow. We first use wide activation residual blocks to extract
spatial correlation features, which allow more low-level information to pass through.
Then, we perform the upsampling operation with a global residual skip connection to
obtain fine-grained flow maps.
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3.1 Key Flow Maps Selection

time line

RecentPeriodicWeather-similar

… … …

Fig. 4. Method proposed to select key flow maps. We divide the time line into three parts, and
select the high-relevant flow maps according to temporal property and weather similarity of each
part.

Due to such a long sequence of historical urban flow data, feature learning and
model training become very challenging. In addition, there are two kinds of flow maps
more relevant and significant than others for prediction: 1) flow maps with similar
weather conditions to the future condition; 2) flow maps at similar times to the pre-
diction target. For instance, if tomorrow is rainy and the goal is to predict the region
flow at 8 p.m., historical flow maps at 8 p.m. with rainy weather condition own a higher
correlation than others for prediction. Therefore, we propose an effective method to se-
lect these higher-relevant flow maps to reduce the input size, while the generated input
sequence still preserves temporal property. Fig. 4 depicts the method of key flow maps
selection.

We first select the key flow maps according to temporal property, and divide them
into two categories: recent flow maps Cr =

{
Ct,Ct−1, · · · ,Ct−(lr−1)

}
, and periodic

flow maps Cp =
{
Ct+∆t−p,Ct+∆t−2p, · · · ,Ct+∆t−lp·p

}
. lr and lp are the length of

recent flow map sequence and periodic flow map sequence separately. p is the period
interval (e.g., 24 hours), and t + ∆t is the predicting target time. The recent flow se-
quence and periodic flow sequence maintain the temporal property, which captures the
mobility trend over the predicting area.

Second, we select the weather-similar flow maps from the remaining historical data.
We still select periodic flow maps from the remaining historical data, and each flow
map owns corresponding weather condition. We normalize the weather conditions data
so that those weather variables are scaled to the same range. Then we calculate the
similarity between the future weather condition Mt+∆t and the weather conditions of
these historical periodic flow maps:

sim(Mt+∆t,Mq) =
1√∑N

i=1

(
m(t+∆t,i) −m(q,i)

)2
s.t. q = t+∆t− k · p, k ∈ Z+.

(1)

We select the top-k periodic flow maps Cs = {Cq1 ,Cq2 , · · · ,Cqk} with higher
sim as the weather-similar flow maps. We will feed weather-similar flow maps Cs with
recent flow maps Cr and periodic flow maps Cp as input instance. We obtain the in-
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put instance with the consideration of the temporal property and the weather condition
similarity, which reduces input size while improving the training efficiency.

3.2 Weather Condition Fusion

Weather conditions have a complicated and significant influence on region flow dis-
tribution over the fine-grained regions. For example, even if the total population in a
coarse-grained region remains stable over time, under storming weather people tend to
move from outdoor regions to indoor regions, which results in the change of flow distri-
bution in the fine-grained regions. Thereby, we design a subnet to handle those implicit
weather impacts on flow distribution all at once.

D
en

se

D
ro

p
o

u
t

R
eL

U

D
en

se

R
eL

UEmbedding

Embedding

Embedding

Continuous Variables

Category

Day of Week

Hour of Day

Discrete

Variables

Weather feature extraction

Fig. 5. The structure of weather condition fusion module.

For each flow map selected in Section 3.1, we process corresponding weather condi-
tions inspired by [11], and Fig. 5 shows the architecture of the weather condition fusion
module. We have divided weather variables into discrete and continuous variables in
Section 2. For continuous weather variables, we directly concatenate them to a vector
mcon. And for discrete weather variables, we feed them into different embedding layers
separately and obtain low-dimensional vectors, and we concatenate those vectors to a
vector mdisc. Then, the concatenation of mcon and mdisc gives the final embedding
vector for weather conditions m = [mcon;mdisc].

We feed the concatenated vector m into the weather feature extraction subnetwork
whose structure is depicted in Fig. 5. By using dense layers, different external impacts
are compounded to construct a hidden representation, which models the complicated
interaction. The set of coarse-grained weather feature mapsMc can be obtained though
weather feature extraction subnetwork.

Intuitively, the future weather condition is more influential on the future flow dis-
tribution than other historical weather conditions. However, as the neural network goes
deeper, future weather information becomes weaker. To avoid the perishing of future
weather information, we apply a 3×3 kernel size convolutional layer followed by a
PixelShuffle layer [16] to obtain the fine-grained future weather feature map Mf , and
Mf will directly carry the future weather information to the later stage of model train-
ing, which plays a similar role as skip connection in Residual Network.
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3.3 Fine-grained Flow Prediction

Fine-grained Flow Prediction module extracts high-level features, which describe not
only the citywide flow distribution, but also the weather influences, and finally output
the fine-grained flow maps.

For SISR problem, it has been demonstrated that with same parameters and compu-
tational budgets, models with wider features before activation have significantly better
performance [20]. Considering the similarity between SISR and WFRFP, we adopt the
wide activation strategy in our network.

After obtaining the key flow maps and weather feature maps as we described in
section 3.1 and 3.2, we stack them into a tensor separately. And then the two tensors
concatenated together, which is represented by X(0) will be fed into flow prediction
module. Convolutional layer is widely used to capture the correlations between an im-
age pixel and the surrounding pixels. Like pixels in image, the crowd flow of a region is
also affected by surrounding regions. So we use a convolutional layer with 5×5 kernel
size to extract low-level features. The convolutional layer Conv1 is defined as follows:

X(1) = f
(
W (1) ∗X(0) + b(1)

)
(2)

where ∗ denotes the convolution operation, f is an activation function, W (1) and b(1)

are the learnable parameters of the convolutional layer Conv1. Then we feed the fused
feature maps into the residual body, which contains R residual blocks to extract high-
level features. Fig. 6 shows the structure of wide activation residual block.
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Fig. 6. Left: the structure of vanilla residual block. Right: the structure of residual block with
wide activation.

The vanilla residual block (e.g., used in EDSR and MDSR [12]) usually consists
of two convolutional layers, i.e., one 3×3 before ReLU activation and another 3×3 af-
ter. Both layers produce the same number of feature maps. Different from the vanilla
residual block, the wide activation residual block expands the features before activation
to let more low-level information pass through ReLU activation and produce more fea-
ture maps. Specifically, to reduce the computational cost, we first slim the features of
residual identity mapping pathway. Then, a 1×1 convolution layer with more channel
numbers (e.g., 256 channels) is used to expand the features. After ReLU, two convolu-
tional layers with fewer features are applied sequentially: one 1×1 convolutional layer
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for reducing the number of features to 64 and the other 3×3 convolutional layer for
further spatial-wise feature extraction.

Since we utilize a fully convolutional residual architecture, the reception field grows
larger as the network goes deeper. In other words, each pixel at the high-level feature
map will be able to capture distant or even citywide spatial correlations. After extracting
the high-level features though residual blocks, we perform the upsampling operation.
We use a 3×3 convolutional layer and a PixelShuffle layer [16] to rear-range and up-
sample the feature maps toN× size with the number of channels unchanged, and output
NI ×NJ fine-grained flow feature map F′.

We take the low-level flow feature as input, and use the same upsampling structure
(a convolution layer followed by a PixelShuffle layer) as the global residual skip con-
nection, which building an information highway skipping over the residual blocks to
allow efficient gradient back-propagation. We obtain the fine-grained flow feature map
F′′ by this way. Finally, we add F′ and F′′, and concatenate them with fine-grained
weather feature map Mf obtained in Section 3.2. Then we use a 9×9 convolution layer
to map the concatenated feature to a tensor F.

4 Model Training

Our WFRFP model can be trained to predict future fine-grained flow from historical
region flow data and weather conditions data by minimizing Mean Squared Error (MSE)
between the predicted flow matrix F̂t and the true flow matrix Ft:

L(θ) =
∥∥∥Ft − F̂t

∥∥∥2
F

(3)

where θ denotes the set of parameters in WFRFP.
Algorithm 1 outlines the training process. We first construct the training instances

from the original flow data and weather conditions data (lines 1-17). Then, our model
is trained via backpropagation and Adam [9] (lines 18-23).

5 Experiments

In this section, we evaluate the performance of our WFRFP model. We conduct experi-
ments on a real-world dataset and compare 2 evaluation scores between 4 baselines and
our proposed model. Besides, we also discuss the performance of different variants of
our model.

5.1 Experimental Setting

Dataset. We evaluate our model on TaxiBJ dataset, which contains weather conditions
and crowd flows information. Table 2 shows more details about TaxiBJ dataset.

– Weather Conditions: This part records the weather conditions in Beijing during
7/1/2013 to 10/31/2013, which contains 16 types weather category (e.g., sunny),
temperature, wind speed, and holiday information.
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Algorithm 1 WFRFP Training Algorithm
Input: Historical flow maps and weather conditions: {C0,C1, · · · ,Ct}, {M0,M1, · · · ,Mt};
lengths of recent, periodic, weather-similar sequences: lr , lp, ls;
future weather condition Mt+∆t; period: p; target time: t+∆t; upsampling factor N .
Output: Learned WFRFP model
1: Q ← ∅
2: for i ∈ [0, lr − 1] do
3: Q ← Ct−i;
4: end for
5: for i ∈ [1, lp] do
6: Q ← Ct+∆t−i·p;
7: end for
8: for i ∈ [1, ls] do
9: Compute sim(Mt+∆t,Mt+∆t−lr−p·(lp+i)) with Eq. 1

10: if sim(Mt+∆t,Mt+∆t−lr−p·(lp+i)) < α then
11: Q ←Mt+∆t−lr−p·(lp+i);
12: end if
13: end for
14: for i ∈ [0, length(Q)] do
15: Select corresponding weather conditions and obtain weather feature maps M though

weather feature extraction module;
16: Select correspondingQ ←M;
17: end for
18: initialize all learnable parameters θ in WFRFP
19: repeat
20: randomly select a batch of instancesQb fromQ
21: find θ by minimizing the objective L(θ) in Eq. 3 withQb
22: until stopping criteria is met
23: return

– Crowd flows: This part records the taxi flows traveling through Beijing during
7/1/2013 to 10/31/2013. The studied area is split into 32×32 grids, where each
grid reports the coarse-grained flow information every 30 minutes. The data format
is a 32×32 matrix, and each value in the matrix represents the flow of a grid region.
Here, we utilize the coarse-grained taxi flows to predict fine-grained flows with 2×
resolution (N = 2) and 4× resolution (N = 4).

Training Details and Hyper-parameters. In our experiment, we partition the data into
non-overlapping training, validation and test data by a ratio of 2:1:1 respectively. Conv1
uses a convolutional layer with 64 filters of kernel size 5×5. Conv2, Conv3 and Conv4
uses a convolutional layer with 64 filters of kernel size 3×3. Conv5 uses a convolutional
layer with 1 filters of kernel size 9×9. The settings of 3 convolutional layers in wide
activation residual block are 256 filters of kernel size 1×1, 64 filters of kernel size 1×1
and 64 filters of kernel size 3×3. The number of residual block is set to 16 and the
batch size is 16. lr, lp and ls are set to 2, 3 and 3 respectively. The period interval p is
24 hours.
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Table 2. Dataset Description.

TaxiBJ Value
Time span 7/1/2013-10/31/2013
Time interval 30 minutes
Coarse-grained size 32×32
Upsampling factor (N ) 2, 4
Fine-grained size 64×64, 128×128
Weather Data Value
Category 16 types (e.g., Sunny)
Temperature/◦C [-24.6, 41.0]
Wind speed/mph [0, 48.6]
Holidays 41

Evaluation Metrics. We use RMSE (Root Mean Square Error), MAE (Mean Absolute
Error) as the evaluation metrics for each model:

RMSE =

√√√√ 1

T

T∑
t=1

∥∥∥Ft − F̂t

∥∥∥2
2

(4)

MAE =
1

T

T∑
t=1

∥∥∥Ft − F̂t

∥∥∥
1

(5)

where F and F̂t are the ground truth and the prediction of the fine-grained flow
map at t-th time slot, and T is the total number of test samples. In general, RMSE
favors spiky distributions, while MAE focuses more on the smoothness of the outcome.
Smaller metric scores indicate better model performances.

Baselines.

– Linear Interpolation Scaling (LIS): Linear interpolation is widely used in image
upsampling. we first utilize linear interpolation to upsample the flow maps and
compute the flow ratio of each fine-grained region to corresponding coarse-grained
region. Then we obtain the fine-grained flow by the Hadamard product of the flow
ratio and coarse-grained flow maps.

– SRCNN [3]: SRCNN presented the first successful introduction of convolutional
neural networks (CNNs) into the SISR problems. It consists of three layers: patch
extraction, non-linear mapping and reconstruction.

– VDSR [8]: SRCNN has several drawbacks such as slow convergence speed and
limited representation ability owing to the three-stage architecture. Inspired by the
VGG-net, VDSR model adopts Very Deep neural networks architecture with depth
up to 20. This study suggests that a large depth is necessary for the task of SR.

– EDSR [12]: By applying the residual architecture [5] and removing unnecessary
modules from residual architecture, EDSR achieve improved results while mak-
ing model compact. EDSR also employs residual scaling techniques to stably train
large models.
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– WFRFP-p: To evaluate the key flow maps selection module, we also compare
it with WFRFP-p, which trains WFRFP model with only periodic flow map se-
quences.

5.2 Experiment Result

Table 3. Comparison among baselines and our method for two upsampling factor.

Method
2 4

RMSE MAE RMSE MAE
LIS 16.458 6.874 11.652 4.279

SRCNN 12.759 7.686 8.336 4.792
VDSR 11.032 7.105 8.159 4.513
EDSR 10.601 6.930 7.973 4.380

WFRFP 10.316 6.629 7.730 4.273
WFRFP-p 11.351 6.775 7.995 4.324

Study on Model Comparison. Table 3 depicts the experiment result of baselines and
our method. According to the results, our fine-grained flow prediction model advances
baseline methods, which brings 2.7% ∼ 59.6% improvement under two upsampling
factors (N = 2 and N = 4). Moreover, several important observations are as follows:

– All deep neural network approaches have lower RMSE and MAE than the inter-
polation method, which verifies that convolutional architecture could learn correla-
tions with spatial features by extracting high-level information.

– The framework obtains about 1.2% ∼ 2.2% and 3.4% ∼ 10.0% enhancement on
two metrics respectively after employing wide activation residual blocks. Experi-
ment result demonstrates the advantage of expand the features before activation,
which could allow more low-level information to pass though and capture spatial
correlations more effectively.

– The advance of WFRFP over WFRFP-p proves that key flow maps selection mod-
ule plays a significant role in our method. Constructing the input instance by se-
lecting high-relevant data could improve the prediction performance and reduce
the input size.

– For each model, the performance of N = 2 has higher RMSE and MAE than N =
4. This may be because the spatial feature becomes complex and vague when the
predicting region gets larger. But we lake of different sizes of flow data to confirm
the supposition.

Study on Number of Residual Blocks. Fig. 7 depicts the the variation of accuracy and
training time with the increase of the number of residual blocks. At first, as the number
of residual block increases, the value of RMSE decreases. This is because deep network



Fine-grained Urban Flow Prediction via a Spatio-Temporal Super-Resolution Scheme 13

4 8 16 24 32
Number of residual blocks

4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.0
5.1

RM
SE

WFRFP

EDSR

Fig. 7. RMSE Performance on different
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could capture more distant spatial dependence and learn flow distribution features bet-
ter. However, when the number of residual block increases to more than 16, the perfor-
mance of our model starts to decline. The reason is that when the neural network stacks
too deep, the probability of model overfitting increases. After many experiments, we
found that when the number of residual block is 16, models has the best performance.

Study on Parameter Size. Fig. 8 shows the parameter size of baseline methods and
our method as the number of residual blocks grows. The default upsampling factor N
is 4. Result shows that WFRFP outperforms baseline method, which demonstrates that
our method save more memory space without performance decline by applying wide-
activation residual block.

6 Related Work

We review some previous works on urban flow prediction. Urban flow prediction prob-
lem is typically spatio-temporal series prediction problems. In earlier time, classical
time-series models including Autoregressive Moving Average (ARMA) model [4] and
its integrated version such as Vector ARMA model [7] and Integrated Moving Average
(ARIMA) model [2] were used to solve urban flow prediction problem. Those classi-
cal time-series methods can capture temporal correlations from historical data, however
they can not capture the spatial correlations of urban flow distribution.

Later, some machine learning methods were applied to forecast urban flow. Support
vector machines have greater generalization ability and guarantee global minima for
given training data, and it has proved that SVR performs well for urban flow prediction
[18]. Alternatively, STW-KNN [19] is an improved KNN (K-nearest neighbor algo-
rithm) model which enhances forecasting accuracy of urban flow based on the spatio-
temporal correlation.

Recently, due to the powerful expressive capabilities of deep neural networks, re-
searchers have started to focus on predicting urban flow by deep learning methods.
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Deep-ST [22] firstly utilized a convolutional network to capture spatial correlations and
forecasted region flow. Further, ST-ResNet [21] was proposed by employing an ad-
vanced residual neural network instead of the general convolution operation. By com-
bining the pyramidal ConvGRU model [1] with periodic representations, Periodic-CRN
[23] was designed to model the periodic nature of crowd flow explicitly. STRCNs [6]
and DeepSTN+ [13] explored the combination of convolution and LSTM to predict
long-term urban flow. All of these deep-learning-based methods have noticed the tem-
poral and spatial dependence of urban flow and tried to find better structures to depict it.
However, none of them constructed a special structure for fine-grained flow prediction
to capture more details from flow maps.

In this paper, inspired by the solutions for SISR problem, we construct a new struc-
ture for fine-grained flow prediction with future weather conditions.

7 Conclusion

In this paper, we formalize the Weather-affected Fine-grained Region Flow Predic-
tion problem and propose WFRFP model, which adopts the idea used in image super-
resolution and predict the flow of a more precise region range. Moreover, WFRFP ad-
dresses the two challenges, i.e., redundant input data and the spatial dependence by
selecting high-relevant flow data and applying the fully convolutional residual archi-
tecture. The experiments on the real-world dataset confirm that our method is more
effective than other baseline methods for fine-grained region flow prediction. In the fu-
ture, we will explore the solution for long-term fine-grained flow prediction and take
more data sources (e.g., point of interest) into consideration.
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