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Abstract: The purpose of this paper is to differentiate between natural images
(NI) acquired by digital cameras and computer-generated graphics (CG) created
by computer graphics rendering software. The main contributions of this paper are
threefold. First, we propose to utilize two different denoising filters for acquiring the
first-order and second-order noise of the inspected image, and analyze its characteristics
with assuming that residual noise follows the proposed statistical model. Second, under
the framework of the hypothesis testing theory, the problem of identifying between NI
and CG is smoothly transferred to the design of the likelihood ratio test (LRT) with
knowing all the nuisance parameters, and meanwhile the performance of the LRT is
theoretically investigated. Third, in the practical classification, using the estimated
model parameters, we propose to establish a generalized likelihood ratio test (GLRT).
A large scale of experimental results on simulated and real data directly verify that
our proposed test has the ability of identifying CG from NI with high detection
performance, and show the comparable effectiveness with some prior arts. Besides, the
robustness of the proposed classifier is verified with considering the attacks generated
by some post-processing techniques.
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1 Introduction and contributions

In past few decades, the industry of rendering software has remarkably develope-

d, for instance, Adobe Photoshop and Autodesk Maya with the ability of yielding

stunningly computer-generated graphics (CG) very similar to the real object or

scene. On the one hand, the technique of CG indeed enriches the human-being’s

daily life; on the other hand, the faked object or scene most possibly interferes

our judgment for differentiating between natural images (NI) acquired by an

imaging device and CG. Besides, it also results into both legal and scientific issues

since the highly realistic CG might be used in the scenarios such as journalism,

academic community, and even judicial trials. For example, a malicious attacker

might generate a large-scale unrealistic images using a rendering software. The

computer-generated graphics are possibly spread on the Internet, that serve as

the faked evidence in the court, leading to misguided judicial judgment. In fact,

this type of cybercrime to some extent threatens the reliability and authenticity

of cyberspace. Hence, the classification between NI and CG remains one of the

primary tasks in the forensic community. Thus, developing reliable methods

with high accuracy for identifying CGs from actual photographs generated from

digital cameras are necessary.

1.1 State of the art

Fortunately, digital image forensics is a possible technique to solve the proposed

problem of classification. Digital image forensics is the technique of identifying

the source of the obtained image (image origin identification) (see [Caldelli et al.,

2017, Qiao et al., 2015a, Qiao et al., 2017, Yao et al., 2018, Qiao and Retraint,

2018]) or authenticating if the inspected image has been tampered (image content

integrity) (see [Swaminathan et al., 2008, Birajdar and Mankar, 2013, Zhou

et al., 2017,Qiao et al., 2018,Qiao et al., 2019,Zhao et al., 2019]). In the digital

forensic community, steganography in fact is a type of tampering technique,

in which the image content integrity is damaged by hidden secret messages.

Some current studies have been done to consider steganalysis for detecting

secret information (see [Luo et al., 2016, Ma et al., 2018, Zhang et al., 2018]

for instance). In this context, it is proposed to focus on discrimination between

NI and CG, belonging to the field of image origin identification.

In general, let us classify forensic methodologies into two categories: active

forensics and passive forensics. Active forensics involves forensic techniques which

authenticate a digital image by using prior-embedded relevant information after

image acquisition, referring to as a digital watermark or signature [Potdar et al.,

2005]. Unfortunately, the main drawback of active approaches requires strict

coordination that any tampering may break the built-in information. On the

contrary, passive techniques need no prior embedded information from an image,
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instead focusing on the intrinsic features such as content textures, the statistical

model of residual noise, and the algorithm of the color filter array (CFA) (see

[Qiao et al., 2013,Gallagher, 2005]). Relying on the characteristics of the image

acquisition pipeline, many passive methodologies have been proposed to deal

with the forensic problem, which also inspires us to distinguish between NI and

CG in this context.

In [Lyu and Farid, 2005] Lyu et al. extracted the first four order statistics

involving mean, variance, skewness, and kurtosis, which are computed from

the wavelet coefficients after discrete wavelet transform (DWT), where samples

are trained as features, together with the machine-learning mechanism such

as support vector machine (SVM). Lyu et al. opened the way of designing

a typical DWT statistical discrimination model consisting of first and higher

order wavelet statistics for classifying between NI and CG. On the basis of the

scheme [Lyu and Farid, 2005], In [Ozparlak and Avcibas, 2011] Mader et al.

extracted the statistics from ridgelet and contourlet wavelet transform (CWT),

which capture more useful information for classifying between NI and CG. The

method proposed in [Wang et al., 2016] overcame the drawbacks of DWT and

CWT, and improved the identification accuracy. Accordingly, wavelet coefficients

always play an important role of designing an effective classifier, which also

inspires us, in this context, to utilize the wavelet-related algorithm for dealing

with the problem of feature extraction.

In particular, the traces left by the procedure of demosaicing can also be used

to design the discriminator. For instance, for detecting traces of demosaicing

within NI, in [Gallagher and Chen, 2008] Gallagher et al. proposed to apply

Fourier analysis to the image after high pass filtering, for capturing the presence

of periodicity in the variance of interpolated coefficients, and then designed the

classifier by using the peak value presented in the transformed domain. However,

in the practical classification, since the peak value is possibly interfered with

the texture of the inspected image, the robustness of the algorithm proposed

in [Gallagher and Chen, 2008] cannot be guaranteed. In [Qiao et al., 2013] Qiao

et al. proposed to use the property of the residual noise characterized by its

statistical parameters, referring to as expectation and variance. With the help

of the hypothesis testing theory, the designed mechanism of classification indeed

improves the detection accuracy. However, the statistical performance of the

discriminator is not theoretically analyzed, resulting in that we cannot obtain the

theoretical upper bound of detection rate. In [Peng et al., 2017] Peng et al. found

that multi-fractal spectrum can not only represent the overall texture feature of

an inspected image, but also describe the local texture feature. In general, the

value of the multi-fractal spectrum curve corresponds to the dimension of fractal

sets surrounded by different precision value. The larger the precision value is,

the more complex the texture of the image is. In virtue of the typical procedure
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of acquiring CG, referring to as modeling, rendering, and illumination, Peng et

al. assumed that the CG cannot thoroughly imitate the complicated contour (or

the texture feature) of natural scenes. Thus its surface is generally smoother

than that of NI. Besides, in current research, a very intriguing algorithm has

been proposed in [Mader et al., 2017]. Discarding any design of discriminator,

the authors found that human-being observer performance on differentiating CG

from NI can be significantly improved with the proper training, feedback, and

incentives.

Generally, extracted features are usually trained for generating a typical

discriminator, referring to as supervised algorithms. Alternatively, those dis-

criminative features can also be used for directly classifying, or designing some

statistical models, and then the model-based statistical detectors are designed,

referring to as un-supervised algorithms. For clarity, in the following discussion,

let us primarily generalize both advantages and disadvantages of two categories:

– Supervised algorithms: In the digital forensic community, almost all

the supervised algorithms are designed based on the machine learning

mechanism, specifically SVM [Lyu and Farid, 2005,Ozparlak and Avcibas,

2011,Wang et al., 2016, Peng et al., 2017, Long et al., 2017] or current-hot

CNN [De Rezende et al., 2018]. The discrimination between extracted fea-

tures, obtained from a large scale of training samples, can be expressed in the

form of classifiers. These classifiers are then used to distinguish between NI

and CG. The effectiveness of the characteristics describing the corresponding

type of images might determine the overall performance of the established

discriminator. To our knowledge, the supervised algorithms always dominate

the study of designing the classifier. However, the challenging problems of

the supervised algorithms are that high dimensions of features might not

be efficient during the stage of training the model, especially dealing with

a large scale of samples. In addition, the performance based on supervised

algorithms can only be empirically investigated mainly relying on a given

validated dataset, not be analytically studied using a statistical model.

– Un-supervised algorithms: The methods in this category refer to the

differentiation between NI and CG using statistical features or statistical

model (see [Qiao et al., 2013, Mader et al., 2017, Gallagher and Chen,

2008, Dirik and Memon, 2009]), and it mainly focuses on the intrinsic

features generated from the image acquirement procedure. For instance, the

traces generated by CFA interpolation serving as the typical features can

be used for representing the unique characteristic of NI in the frequency

domain (see [Gallagher and Chen, 2008]) or describing the statistical

model to differentiate between NI and CG (see [Qiao et al., 2013]). In

general, the unique characteristic of NI can be directly used to design
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an effective discriminator without the training stage. Thus, the efficiency

(or computation cost) of the algorithm can be improved compared to

supervised algorithms. It should be noted that the main advantage of the

designed detectors in this category lies in the theoretical explanation for the

principals of the algorithms whose validation is not only evaluated using

empirical results. In addition, few current algorithms focus on investigating

un-supervised algorithms based on the statistical model, or theoretically

studying the performance of the designed discriminator. To fill the gap, let

us establish a typical statistical model-based discriminator for distinguishing

between NI and CG.

1.2 Contributions of the paper

In this paper, we extract the residual noise of an image to establish the statistical

model, and then design the Likelihood Ratio Test (LRT) and the Generalized

Likelihood Ratio Test (GLRT) based on the hypothesis testing theory. The main

contributions of this paper can be summarized below:

1. By removing the disturbance caused by pixels’ heterogeneity (of the property

of image texture), it is proposed to devise a typical filter to extract the

first-order residual noise in the spatial domain. Then by using a regression

parametric model, the second-order noise, empirically following the Gaussian

distribution, can be successfully expressed in the frequency domain.

2. In an ideal scenario, where all the nuisance model parameters are perfectly

known, the optimal LRT is designed, and we mainly analyze its statistical

performance. The advantage of the LRT is that it can easily serve as an

upper bound of the detection power for discriminating between NI and CG

images.

3. In a practical scenario, in which parameters of the proposed model remain

unknown, we first develop the algorithm to predict the concerning parameter-

s. Then in the case of adopting the estimated model parameters, the practical

GLRT is established. Also, its statistical performance can be analyzed and

applied to our practical classification between NI and CG.

4. Solid experimental results show the sharpness of the theoretically established

LRT and the good performance of the practically designed GLRT. Besides,

in comparison with current detectors, our proposed detector performs the

comparable relevance. In addition, the robustness of the proposed classifier

can be verified with considering the attacks generated by some post-

processing techniques.
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in the following investigation, let us first extract the first-order noise from the

image based on the characteristic of the CFA interpolation.

2.2 Extraction of first-order noise

In general, to deal with NI, the changes of the interpolation algorithm

unavoidably arise some forensic traces that can be reliably detected. Besides,

the interpolated pixels of NI characterize the unique features, which cannot be

carried on by CG. Let us first design a typical high-pass filter to obtain the

first-order noise characterizing the CFA pattern features. In this context, we

propose to use Bayer model (one type of the most adopted CFA pattern) as our

CFA pattern. Without the loss of generality, our proposed discriminator can be

smoothly extended to other pattern.

Specifically, the first-order noise extraction can be processed as follows. First,

we select only the green color channel of the given image 2, then the gray-level

image I is convolved with a high-pass filter in order to extract the first-order

noise representing the details of image. Because the detailed information can

describe the CFA feature better than that of the original NI. In addition, the

periodicity of the green channel of NI can be exposed. However, by proceeding

the same operation, CG do not carry that typical feature, such as periodicity. In

this context, we propose to design three different high-pass filters for first-order

noise extraction.

Paradigm one: The image I is convolved with a designed typical high-pass

operator, which is formulated as:

H =



0 1 0

1 −4 1

0 1 0


 ,

where I denotes the pixel intensity of the green color channel. Using that high-

pass filter, the differences between the central element (or pixel intensity in this

context) and its four neighboring elements are enlarged. The residual image

primarily representing the noise can characterize the more NI features caused

by CFA interpolation than the original NI without filtering.

Paradigm two: Also, we can design the second denoising filter by using a

directional filter bank used in [Holub and Fridrich, 2013]. We utilize a set of

three linear shift-invariant filters represented by the kernels D = {K(e)}, e ∈
{1, 2, 3}. They can be used to evaluate the smoothness of a given image I

along the horizontal, vertical, and diagonal directions by computing the so-

called directional residual noise W(e) = K(e) ⋆ I, where the symbol “⋆” denotes

2 In this context, we use the word “image” to denote a natural image acquired by a
camera device or a graphic generated by rendering software.
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a mirror-padded convolution guaranteeing W(k) has the same size with original

image I. In this context, it is proposed to exclusively use kernels D built from

one-dimensional 16-tap Daubechies wavelet decomposition filters l and h:

K(1) = l · hT , K(2) = h · lT , K(3) = h · hT . (1)

In this case, the filters correspond to two-dimensional vertical LH, horizontal

HL, and diagonal HH wavelet directional high-pass filters respectively. Then the

residual images W(1),W(2),W(3) of I coincide with the wavelet vertical LH,

horizontal HL, and diagonal HH directional decomposition respectively.

Paradigm three: Still, it is proposed to utilize the wavelet denoising filter.

The noise-free image and noise have different statistical characteristics after

wavelet transform. Specifically, the main energy of the image itself corresponds

to the large wavelet coefficients, but the remaining energy (or noise) corresponds

to the small wavelet coefficients. Based on the assumption, we can set an

appropriate threshold of wavelet coefficients for distinguishing between the main

and the remaining energy. The value of wavelet coefficients larger than the

threshold is considered to be a useful signal while that of wavelet coefficients

smaller than the threshold refers to noise.

In the first scale of wavelet decomposition, the denoising operation for 3

high-pass subbands can not extract the noise completely. Thus, still, the low-

pass subband (LL) in the first scale needs to be processed using the wavelet

decomposition. It is proposed to employ Daubechies 8-tap wavelet decomposition

with the whole 4 scales, which have been empirically effective in our noise

extraction. Unlike Paradigm two, Paradigm three utilizes wavelet decomposition

extracting multiple high-pass subbands in different scales, resulting in the more

decomposed noise.

Due to that the high frequential component of NI involves the traces

of demosaicing introduced by CFA interpolation, the pixels of image with

the typical interpolation algorithm can exhibit high correlation. Although the

extracted first-order residuals are capable of exposing the differences between

NI and CG, those discriminations cannot help us design an effective classifier.

Because the residual noise still contains some remnants, dependent of the edges

and complex texture regions. Therefore, in the next subsection, we further

conduct the second-order filtering.

2.3 Extraction of second-order noise

Generally, to design the statistical model-based discriminator, it is proposed

to transform the first-order noise from the spatial domain to the frequency

domain. To this end, the mean of the first-order noise along each diagonal is

estimated. Then its frequential representations can be obtained by using Fast
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Fourier Transform (FFT). Finally, the one-dimensional noise as a vector can be

obtained (see [Qiao et al., 2013] for details). In the transformed domain, the

second-order noise can be extracted by using a regression parametric model. It

is proposed to use the least square algorithm to deal with the one-dimensional

noise. In the frequency domain, non-overlapping channel zk = {zk,j} of the

random variables (or noise) were partitioned as detailed in Section 5.2, the

channel index k ∈ {1, ...,K}. The following polynomial representation predicts

the estimation of element zk,j , ∀j ∈ {1, ...,m}, of vector zk,

ẑk,j = ak,0 + ak,1 · xk,1 + ak,2 · x2
k,2 + . . . + ak,n · xn

k,m, (2)

where {ak,0, ak,1, . . . , ak,n} expresses the parameter vector of the regression

model, {1, xk,1, . . . , x
n
k,m} denotes the in-order variable vector, and j represents

the index of random variables. It should be noted that the zk,j represents one

sample of zk.

In practice, Eq. (2) could be expressed by using the following formulation:

zk = X ·




ak,0

ak,1
...

ak,n−1

ak,n




, zk =




zk,1

zk,2
...

zk,m−1

zk,m




, X =




1 xk,1 x2
k,1 . . . . . . xn−1

k,1 xn
k,1

1 xk,2 x2
k,2 . . . . . . xn−1

k,2 xn
k,2

...
...

...
. . .

. . .
...

...

1 xk,m x2
k,m . . . . . . xn−1

k,m xn
k,m




(3)

Then, in virtue of least square algorithm, we can estimate the parameters of

polynomial fitting model by:




ak,0

ak,1
...

ak,n−1

ak,n




= (XTX)
−1

XTzk. (4)

Let us define the second-order noise, for each non-overlapping channel zk, nk,j

can be formulated as:

nk,j = zk,j − ẑk,j , (5)

where ẑk,j denotes the estimation of zk,j . With the proposed regression model

Eq. (2), one can obtain the second-order noise of the image. Assuming that the

random variable nk,j is independent and identically distributed (IID), and can

be modelled by the Gaussian distribution written as:

nk,j∼N (µk, σ
2
k), (6)
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Figure 2 : Empirical distribution of the estimated second-order noise ni, H0 and H1

see Section 3.1.

where µk is the expectation of the model and σk represents the standard

deviation of the distribution.

For clarity and simplicity, let us extend the assumption for one channel of

the second-order noise to all the channels. An alternative representation of those

second-order noise is usually adopted by gathering the second-order noise. Let us

assume that all the random variables with different channels of the image follow

the Gaussian model with the same expectation and standard deviation. Due to

that µk and σk within different channels are very approximate, it is reasonable

that we can formulate the statistical distribution of the second-order residuals

by n = {ni}, and ni ∼N (µ, σ2), where, i ∈ {1, . . . , l}, with l = K ·m, while µ

and σ denotes the expectation and the standard deviation respectively.

It is difficult to establish the statistical distribution of an image I. However,

the second-order residuals of an image approximately follow the Gaussian model

with sharing similar expectation and variance among different channels. This

assumption has been empirically evaluated on a dataset. As Fig. 2 illustrates,

we show the comparison between the empirical result of second-order noise ni

and its the Gaussian fitting.

3 Optimal detector for classification: designing the LRT

3.1 Classification problem formulation

This section aims at presenting the optimal LRT and studying its statistical

performance. The statistical test is designed based on the second-order noise

ni. Each type image can be characterized by its Gaussian parametric model

with parameters θt = (µt, σ
2
t ), t ∈ {0, 1}. Hence, within the framework of the

hypothesis testing theory, the classification problem can be cast into the two
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following binary detection:

{
H0 :

{
ni∼N (µ0, σ

2
0), ∀i = (1, ..., l)

}

H1 :
{
ni∼N (µ1, σ

2
1), ∀i = (1, ..., l)

} (7)

where (µ0, σ
2
0) represents the expectation and variance under hypothesis H0 =

{the image is NI}, and (µ1, σ
2
1) for hypothesis H1 = {the image is CG}. For

solving statistical detection problem above, Lehmann [Lehmann and Romano,

2006, Theorem 3.2.1] states that the most powerful test for classifying between

H0 and H1 at a given false positive rate (FPR) α0 in the class Kα0
can be

described below. Let

Kα0
=

{
δ : sup

θt

P0[δ(n) = H1] ≤ α0

}
(8)

be the class of test, with an upper-bounded FPR α0. Here, Pt[·] stands for the

probability under Ht, t ∈ {0, 1}, and the supremum over θt has to be understood

as whatever the distribution parameters might be, in order to ensure that the

false alarm probability α0 can not be exceeded. It is aimed at finding a test δ

maximizing the power function, defined by the true positive rate (TPR). Among

all the tests in Kα0
, the LRT is the most powerful test, which maximizes the

detection power:

βδ = P1[δ(n) = H1], (9)

equals to minimize the false negative rate α1 = P1[δ(n) = H0] = 1− βδ.

In the following subsection, the LRT is first described in details and then its

statistical performance is analytically established.

3.2 Design of likelihood ratio test

We assume that the statistical discriminator parameters θ0 = (µ0, σ0), θ1 =

(µ1, σ1) are all known, the classification problem can be transformed to a

statistical test between two simple hypotheses. Based on the assumption that

the random variables ni is IID, the LRT can be represented by the following

decision rule:

δ(n) =

{
H0 if Λ(n) =

∑l
i=1 Λ(ni) ≤ τ

H1 if Λ(n) =
∑l

i=1 Λ(ni) > τ
(10)

where the solution of P0 [Λ(n) > τ ] = α0 is denoted as the decision threshold

τ , to guarantee that the FPR equals α0. Based on the Gaussian model Eq. (7),

the probability mass function (PMF) under two hypotheses can be respectively

written as: Pθ0
and Pθ1

, then one can describe the log Likelihood Ratio (LR)

for one observation as:

Λ(ni) = log
Pθ1

[ni]

Pθ0
[ni]

. (11)
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In practical detection, since parameter µt are too small, resulting into that it

can be prescribed as 0. Therefore, the LR is easy to be represented as:

Λ(ni) = log

(
σ0

σ1

)
+

σ2
1 − σ2

0

2σ2
0σ

2
1

n2
i . (12)

3.3 Statistical performance of LRT

Based on the assumption that the second-order noise ni is IID, we propose

to adopt some asymptotic theorems, due to in this context the number of

observations of the second-order noise is large enough. Then under hypothesis

Ht, t ∈ {0, 1}, EHt
(Λ(ni)) and VHt

(Λ(ni)) denotes the expectation and the

variance of the LR Λ(ni) respectively. Note that we assume µt = 0, and for each

LR Λ(ni) in Λ(n), the expectation and the variance can be expressed by:

EHt
(Λ(ni)) = log(

σ0

σ1
) +

σ2
1 − σ2

0

2σ2
0σ

2
1

σ2
t , (13)

VHt
(Λ(ni)) =

(
σ2
1 − σ2

0

)2

4σ4
0σ

4
1

2σ4
t , t ∈ {0, 1}. (14)

Note that those moments can be calculated analytically, Lindeberg’s central limit

theorem(CLT) [Lehmann and Romano, 2006, Theorem 11.2.1] states that as the

number of samples l of the second-order noise tends to infinity it holds true that:

∑l
i=1 (Λ(ni)− EHt

(Λ(ni)))
(∑l

i=1 VHt
(Λ(ni))

)1/2
d−→ N (0, 1), t ∈ {0, 1}, (15)

where
d−→ represents the convergence in distribution; N (0, 1) denotes the

standard normal distribution with zero expectation and unit variance. This

takes crucial interest to establish the statistical properties of the LRT (see [Qiao

et al., 2015b,Qiao et al., 2014]). In fact, once the moments of the LR have been

calculated analytically under hypothesis H0, one can normalize the LR Λ(n)

under hypothesis H0 as follows:

Λ̃(n) =
Λ(n)−∑l

i=1 EH0
(Λ(ni))

(
∑l

i=1 VH0
(Λ(ni)))1/2

. (16)

Then let us define the normalized LRT with Λ̃(n) by:

δ̃ =

{
H0 if Λ̃(n) < τ̃

H1 if Λ̃(n) ≥ τ̃
(17)

thus, it is straightforward to establish the statistical properties of the LRT Eq.

(17).
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Proposition 1. Assuming that for the image classification as case within the

two simple hypotheses Eq. (7), in which both parameters µt and σt are all known,

for clarity, Φ and Φ−1 respectively represent the cumulative distribution function

(cdf) of the standard normal distribution and its inverse, then for any α0 ∈ (0, 1),

the decision threshold can be defined by:

τ̃ = Φ−1 (1− α0) . (18)

Proposition 2. Assuming that for the image classification problem as case

within the two simple hypotheses Eq. (7), in which both parameters µt and σt

are all known, for any decision threshold τ̃ , the power function associated with

the proposed test δ̃ Eq. (17) is given by:

βδ̃ = 1− Φ

(√
v0

v1
· Φ−1 (1− α0) +

e0 − e1√
v1

)
, (19)

where et =
∑l

i=1 EHt
(Λ(ni,t)), vt =

∑l
i=1 VHt

(Λ(ni,t)) , t ∈ {0, 1}.
Eqs. (18) and (19) emphasize the main advantage of the normalized LR as

described in Eq. (17): it allows to set any threshold that guarantees a FPR

independently from any distribution parameter.

4 Practical detector for classification: designing the GLRT

4.1 Model parameter estimation

In the practical scenario, it is much more realistic to assume that parameters of

Gaussian model-based discriminator are unknown. Our proposed classification

aims at identifying the given image I acquired by either digital camera or

computer rendering software.

In this section, let us devise the GLRT for dealing with the problem described

in Eq. (7). Hence, first we have to estimate expectation of the Gaussian model

parameters by the Maximum Likelihood (ML) algorithm as follows:

µ̄t =
1

M · l
M∑

m=1

l∑

i=1

nm
i , (20)

and the mean of variance is denoted as:

σ̄2
t =

1

M · (l − 1)

M∑

m=1

l∑

i=1

(nm
i − 1

l

l∑

i=1

nm
i )2, (21)

where M denotes the total number of images.
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4.2 Design of generalized likelihood ratio test

Generally, the solution of the Generalized Likelihood Ratio (GLR) essentially

consists in replacing the unknown parameters by its ML estimation. Immediately,

let us define the GLRT δ̂1(n) as follows:

δ̂1(n) =

{
H0 if Λ̂1(n) =

∑l
i=1 Λ̂1(ni) < τ̂1

H1 if Λ̂1(n) =
∑l

i=1 Λ̂1(ni) ≥ τ̂1
(22)

where τ̂1 refers to the solution of following:

PH0

[
Λ̂1(n) ≥ τ̂1

]
= α0. (23)

For each sample, the log GLR (refers to the log value of generalized likelihood

ratio), Λ̂1(ni) can be expressed by:

Λ̂1(ni) = log
P
θ̂1

[ni]

P
θ̂0

[ni]
. (24)

Based on the assumption that µ̄t is infinitely close to 0, refers to Eq. (20), here,

θ̂0 = (0, σ̄2
0) and θ̂1 = (0, σ̄2

1) denote the estimates of statistical parameters θ0

and θ1, with the specific elements shown in Eq. (7), one can rewrite the GLR

Eq. (24) as:

Λ̂1(ni) = log

(
σ̄0

σ̄1

)
+

1

2

(
n2
i

σ̄2
0

− n2
i

σ̄2
1

)
, (25)

where σ̄t, t ∈ {0, 1}, denotes the averaged estimation of the second-order noise’s

standard variance of the training dataset, as given in Eqs. (20) and (21). In

order to normalize the GLR Λ̂1 (n) of the second-order noise, Eq. (25) can be

formulated as:

Λ̂2(n) =
Λ̂1(n)− e⋆t√

v⋆t
. (26)

where e⋆t =
∑l

i=1 EHt

(
Λ̂1(ni,t)

)
and v⋆t =

∑l
i=1 VHt

(
Λ̂1(ni,t)

)
, indicates the

expectation and variance of GLR Λ̂1 (n), under hypothesis Ht, t ∈ {0, 1}
respectively. Hence, for the second-order noise n of an inspected image, the

classification problem can be easily formulated by the normalized GLRT:

δ̂2(n) =

{
H0 if Λ̂2(n) < τ̂2

H1 if Λ̂2(n) ≥ τ̂2
(27)

Thus, let us establish the statistical properties of the GLRT.

Proposition 3. Assuming that the second-order noise of an image is modeled

by the proposed Gaussian parametric model, and both linear model statistically
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unknown parameters θ̂0 = (0, σ̄2
0), θ̂1 = (0, σ̄2

1) are estimated as Eqs. (20) and

(21), then for any α ∈ (0, 1) the decision threshold of the proposed GLRT δ̂2 can

be calculated by:

τ̂2 = Φ−1 (1− α0) . (28)

Proposition 4. Assuming that the second-order noise of an image are modeled

by the proposed Gaussian parametric model, and both linear model unknown

statistical parameters θ̂0 = (0, σ̄2
0), θ̂1 = (0, σ̄2

1) are estimated as in Eqs. (20)

and (21), for any decision threshold τ̂2, the detection power function associated

with test δ̂2 Eq. (27) can be calculated by:

βδ̂2
= 1− Φ

(√
v⋆0
v⋆1

· Φ−1 (1− α0) +
e⋆0 − e⋆1√

v⋆1

)
. (29)

5 Experimental results and analysis

This section illustrates theoretical and empirical experimental results of our

proposed statistical discriminator, comparative analysis with other prior arts

[Qiao et al., 2013, Lyu and Farid, 2005, Peng et al., 2017,Gallagher and Chen,

2008], and robustness investigation of our discriminator.

5.1 Results on simulated images

To evaluate our theoretically established results, we use the simulated noise

which contains the images’ characteristics. Specifically, we first generate two

groups of random variables, simulating the second-order noise, where the mean

and variance are pre-set based on the CG and NI samples. In this work, NI
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is characterized by θ0 = (0, 0.4747), referring to as the model parameters of

ni under hypothesis H0; meanwhile, CG is characterized by θ1 = (0, 0.1968)

under hypothesis H1. It is necessary to note that pixels of the NI exhibit high

correlation caused by the CFA interpolation. In the stage of noise extraction, the

selected threshold of wavelet coefficients is larger than the value of the optimal

threshold of NI proposed in [Donoho, 1995], which leads to the extracted first-

order residuals of NI with a larger value, and meanwhile that the variance of the

first-order residuals of NI is larger than CG.

In fact, those parameters are estimated parameters for two different types

of images from the Dresden dataset [Gloe and Böhme, 2010] and our collected

CG dataset. Thus, one can construct two sets of random variables by repeating

10000 simulations respectively. Then, the first set of 10000 images representing

NI, consisting of 383 realizations 3 of random variables for each image; the second

set of 10000 images representing CG, consisting of the same number of random

variables.

The Fig. 3 illustrates the comparison between the theoretical and empirical

distribution of the optimal LR Λ̃(n). Under hypothesis H0, the empirical result

of the LR Λ̃(n) approximately follows the standard Gaussian distribution,

which directly verifies the correctness of the theoretically established statistical

property for the proposed LRT. Similarly, under hypothesis H1, the empirical

and theoretical distribution of the optimal LR Λ̃(n) are nearly superposed. In

this scenario, the Gaussian distribution is characterized by expectation e1−e0√
v0

and variance v1
v0

(see Section 3.3), which also validates the effectiveness of the

established statistical classifier. In addition, our statistical test can warrant the

prescribed FPR. Thus, let us compare the empirical and theoretical FPR α0

of the optimal LR Λ̃(n) as a function of the decision threshold τ̃ , see Fig. 4.

This figure emphasizes that the proposed LRT has the ability to guarantee the

prescribed FPR in practice. In some cases (τ̃ ≥ 2), we emphasize that the slight

discrimination between two curves might be caused by the inaccuracy of the

CLT which can hardly model the tails of the distribution.

5.2 Results on authentic dataset

In the following experiments, we select 400 NIs of various indoor and outdoor

scenes from Dresden dataset [Gloe and Böhme, 2010], and 400 CGs from our own

collected dataset which are created by using rendering software or downloaded

from the Internet including computer portraits, various indoor and outdoor

scenes; then let us crop the central 256×256 region of each sample which carries

sufficient information to characterize the corresponding type of images. Besides,

the CGs downloaded from the Internet cannot own the same size as the NIs. In

3 The value 383 is calculated from NI dataset.
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our proposed algorithm, we have to guarantee that the size of an inquiry image

remains unchanged.

In Section 2.2, three paradigms of the first-order noise extraction have been

studied. Then let us compare the detection power using different filters. It is

proposed to use the accuracy (ACC) and Area Under Curve (AUC) as metric to

evaluate the performance of the detector with three different filters. The ACC

of the detector using the first, the second and the third filter is 70.40%, 75.63%,

and 90.08%; meanwhile the AUC is 0.732, 0.774, and 0.920. It is clear that the

detector using the third filter can achieve the optimal result. Because the third

one utilizes the wavelet decomposition of multiple scales which could obtain more

information including the first-order noise. Next, we will discuss the settings of

another regression model filter for extracting second-order noise in the frequency

domain.

The regression model-based filter is formulated by a polynomial order n equal

to 4, and the size of the vector zk is set with m = 64 observations. Note that

to avoid dealing with the outlier (or abnormal variables), possibly resulting into

the unstable results in the stage of parameter estimation, the first channel z1
and the last zK set of noise are both excluded from our calculation.

The detection power (or TPR) of the LRT and GLRT are both illustrated in

Fig. 5. The ROC that is the βδ as a function of FPR α0, of empirical established

performance Eq. (29) is compared. It should be noted that the ROC curve of the

LRT is generated from the 10000 simulations, while the GLRT obtained from an

authentic dataset. In fact, the loss of power indeed exists between discriminators,

caused by the mismatch of the model fitting and parameter estimation. In

practical discrimination, because of pixel inhomogeneity, the proposed Gaussian

model cannot fit all the inspected images. Besides, another limitation is that

our proposed algorithm of estimation is not optimal, which can be improved

by using other better-performed algorithms. Nevertheless, our proposed GLRT

indeed provides a general framework for designing a un-supervised model-based

detector, which has not been widely investigated in the forensic community.

5.2.1 Comparative analysis

We carry out the experiments by comparing our proposed discriminator with

some prior arts [Qiao et al., 2013,Lyu and Farid, 2005,Peng et al., 2017,Gallagher

and Chen, 2008] in Fig. 6. Because the algorithms in [Lyu and Farid, 2005,Peng

et al., 2017] require a large scale of labeled images to train the designed

discriminators. We propose to randomly segment 9 portions of the size 256×256

from each image of NI and CG, and obtain 3600 NIs and 3600 CGs that are

used for comparative analysis with other classification schemes. We use the
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Table 1 : Comparison of detection power using different methods.
PPPPPMetric

Method
Proposed [Qiao et al., 2013] [Lyu and Farid, 2005] [Peng et al., 2017] [Gallagher and Chen, 2008]

PNI 95.33% 56.90% 98.78% 99.11% 80.33%
PCG 96.44% 57.35% 96.78% 97.89% 73.44%

identification accuracy for NI and CG as metrics, and which is formulated by:

PNI =
TP

P
, and PCG =

TN

N
(30)

where TP and TN denote the number of correctly classified NI and CG, P and

N is the number of real positive cases and real negative cases respectively in the

dataset. Table 1 illustrates the identification accuracy comparison of methods

[Qiao et al., 2013, Lyu and Farid, 2005, Peng et al., 2017,Gallagher and Chen,

2008]. For LIBSVM [Chang and Lin, 2011] discriminator with the linear kernel

proposed in [Lyu and Farid, 2005, Peng et al., 2017], we use the hold-out to

estimate the identification accuracy. To guarantee the reliability of experiments,

first, we randomly select 300 NIs and 300 CGs from the image dataset as training

dataset, and set remaining 100 NIs and 100 CGs as testing dataset. Then by

cropping 9 non-overlapped patches for each image, the selected training image

dataset is extended to a dataset with 2700 NIs and 2700 CGs, and the remaining

testing dataset is extended to a dataset with 900 NIs and 900 CGs.

Compared to the supervised detectors in [Lyu and Farid, 2005, Peng et al.,

2017], the performance of our discriminator is very slightly worse than that of

the prior art. Because the proposed scheme only utilizes the second-order noise

as features for image authentication. However, the supervised scheme requires a

large scale of training data (at least 500 training images in [Peng et al., 2017]; at

least 4800 training images in [Lyu and Farid, 2005]), we only use 20 images to

estimate the parameters, as shown in Table 2. As the number of trained images

degrades, the detection power is relevant stable, meaning that our statistical

classifier can remain its detection power with the limited given samples while

the supervised algorithms [Lyu and Farid, 2005,Peng et al., 2017] cannot perform
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Table 2 : The detection power βδ comparison using different number of training
samples under different FPR α0.

❅
❅
❅n

α0 0.1 0.2 0.3 0.4 0.5

10 97.00% 99.00% 99.56% 99.67% 99.89%

20 97.11% 99.00% 99.56% 99.67% 99.89%

30 97.22% 99.00% 99.56% 99.67% 99.89%

40 97.22% 99.00% 99.56% 99.67% 99.89%

50 97.22% 99.00% 99.56% 99.67% 99.89%

well. Our discriminator outperforms both two other un-supervised detectors

[Gallagher and Chen, 2008,Qiao et al., 2013]. Due to the considerable small size

256×256 of tested images, the detector of [Qiao et al., 2013] requiring the large

size of the inspected image cannot collect enough observations for establishing

the concerning detector, resulting in unsatisfying performance. However, our

proposed discriminator cannot easily be interfered with the image size (see Fig.

7d). In addition, the detection performance of [Gallagher and Chen, 2008] largely

relies on the unique feature characterized by the peak value in the frequency

spectrum, which is not very robust to the images with variable textures.

5.2.2 Analysis of robustness

In recent studies, some researchers focus on the images in the social networks,

which have been compressed or resized. In that scenario, we have to consider

the proposed algorithm can resist against the attacks caused by post-processing

operations. In order to analyze the robustness of the proposed statistical model,

different post-processing operations to the images. The operation includes:

compressing images saved as JPEG format, resizing images, adding Gaussian

white noise to images and cropping images.

The settings of the quality factors for JPEG compression are 98, 96, 94,

and 92. We use 20 NIs and 20 CGs to estimate the model parameters that will

be used to image classification. Since high-resolution images with large quality

factors are prevalent anywhere, it makes sense that we evaluate the robustness

of our proposed algorithm in the case of large quality factors. As shown in Fig.

7a, it presents ROC curves of the proposed discrimination for uncompressed and

compressed images. With decreasing the quality factor, the performance of the

proposed discriminator is degraded. In fact, when the quality factor arrives at

80, the detection performance is nearly close to randomly guess. However, it still

preserves a high detection performance with comparatively large quality factors.

Then, it is proposed to investigate the detection performance of resized

images. First, we resize the image with scaling factors of 0.8, 1.2 and 1.5,

and then use 20 NIs and 20 CGs to estimate the model parameters. As Fig.

7b illustrates, the detection performance is degraded severely when the scaling
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Figure 7 : The ROC curves comparison with (a) different compression quality factors;
(b) different scaling factors; (c) adding different Gaussian noise; (d) different cropping
factors.

factor is 1.5. The main reason is that the image size enlargement can be regarded

as a linear interpolation of local pixels. Based on the principle that pixels of

the NI with the same interpolation model or interpolation algorithm exhibit

high correlation, the pixels of CG introduced high correction with the linear

interpolation of enlargement, which can reduce the difference between NI and

CG, and meanwhile will eventually influence the classification accuracy.

Thirdly, we add Gaussian white noise with the SNR (dB) of 80, 60, 40 and

20, and use 20 NIs and 20 CGs to estimate the model parameters. As shown

in Fig. 7c, with increasing noise intensity (decreasing the value of SNR), the

discrimination performance remains stable, testifying the proposed statistical

classifier could resist the attack of adding noise effectively.

Last, we acquire images with different cropping factors of 0.8, 0.6 and 0.4,

then we choose 20 NIs and 20 CGs for estimating the model parameters which

will be used to image classification. As Fig. 7d illustrates, our proposed detector

still perform very well when cropping factor equals to 0.6 or 0.8. While the

cropping factor equals to 0.4, the detection power of our proposed classifier

degrades. Because of the reduction of the size of the test images, we cannot
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obtain enough pixels, resulting in the lack of cumulative difference between NI

and CG for our image classification.

6 Conclusion and discussion

In this paper, we propose an approach to differentiate between natural images

and computer-generated graphics. We not only focus on the problem of real

images classification by designing the GLRT, but also theoretically establish

a statistical discriminator, referring to as LRT, for classifying the simulated

data. Each type of image is characterized by its Gaussian distribution of second-

order noise with parameters (µt, σt) , t ∈ {0, 1}, which is extracted using a

regression model-based filter in the frequency domain. Then the problem of

image classification is cast into the framework of the hypothesis testing theory.

Assuming that all of the parameters are known, the statistical performance

of the LRT is analytically established, meanwhile the statistical property is

studied. In the practical scenario, based on the estimated parameters, the

proposed GLRT shows efficient classification performance under the prescribed

FPR. Moreover, numerical results verify that the proposed scheme can achieve

fairly good performance with a good robustness against to some post-processing

techniques.

In fact, in the community of image forensics for classifying between NI and

CG. The supervised methodologies dominate the research. Again, we have to

admit that our proposed discriminator cannot outperform (but very close to)

that of the supervised algorithms such as [Lyu and Farid, 2005,Peng et al., 2017].

However, our algorithm indeed provides an alternative solution to deal with

the problem of classification between NI and CG. Supposing that the forensic

analyzer cannot acquire a large scale of labeled images for training, the accuracy

of the supervised will not be guaranteed.

Acknowledgements

This work is funded by the cyberspace security major program in National Key

Research and Development Plan of China under grant No. 2016YFB0800201,

the Natural Science Foundation of China under grant No. 61702150 and and

No. 61572165, the Public Research Project of Zhejiang Province under grant

No. LGG19F020015, the Key research and development plan project of Zhejiang

Province under grant No. 2017C01062 and No. 2017C01065.

References

[Birajdar and Mankar, 2013] Birajdar, G. K. and Mankar, V. H. (2013). Digital image
forgery detection using passive techniques: A survey. Digital Investigation, 10(3):226–
245.

1171Huang M., Xu M., Qiao T., Wu T., Zheng N.: Designing ...



[Caldelli et al., 2017] Caldelli, R., Becarelli, R., and Amerini, I. (2017). Image origin
classification based on social network provenance. IEEE Transactions on Information
Forensics and Security, 12(6):1299–1308.

[Chang and Lin, 2011] Chang, C.-C. and Lin, C.-J. (2011). Libsvm: a library for
support vector machines. ACM transactions on intelligent systems and technology
(TIST), 2(3):27.

[De Rezende et al., 2018] De Rezende, E. R., Ruppert, G. C., Theophilo, A., Tokuda,
E. K., and Carvalho, T. (2018). Exposing computer generated images by using deep
convolutional neural networks. Signal Processing: Image Communication, 66:113–
126.

[Dirik and Memon, 2009] Dirik, A. E. and Memon, N. (2009). Image tamper detection
based on demosaicing artifacts. In Image Processing (ICIP), 2009 16th IEEE
International Conference on, pages 1497–1500. IEEE.

[Donoho, 1995] Donoho, D. L. (1995). De-noising by soft-thresholding. IEEE
transactions on information theory, 41(3):613–627.

[Gallagher and Chen, 2008] Gallagher, A. and Chen, T. (2008). Image authentication
by detecting traces of demosaicing. In Computer Vision and Pattern Recognition
Workshops, 2008. CVPRW’08. IEEE Computer Society Conference on, pages 1–8.
IEEE.

[Gallagher, 2005] Gallagher, A. C. (2005). Detection of linear and cubic interpolation
in jpeg compressed images. In Computer and Robot Vision, 2005. Proceedings. The
2nd Canadian Conference on, pages 65–72. IEEE.
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