
Deep Android Malware Classification with
API-based Feature Graph

Na Huang∗, Ming Xu∗†, Ning Zheng�∗†, Tong Qiao∗, Kim-Kwang Raymond Choo‡
∗School of Cyberspace, Hangzhou Dianzi University, HangZhou, China

†School of Computer Science and Technology, Hangzhou Dianzi University, HangZhou, China
‡Department of Information Systems and Cyber Security, The University of Texas at San Antonio, TX 78249, San Antonio, USA

Abstract— The rapid growth of Android malware apps poses
a great security threat to users thus it is very important and
urgent to detect Android malware effectively. What’s more, the
increasing unknown malware and evasion technique also call for
novel detection method. In this paper, we focus on API feature
and develop a novel method to detect Android malware. First,
we propose a novel selection method for API feature related
with the malware class. However, such API also has a legitimate
use in benign app thus causing FP problem (misclassify benign
as malware). Second, we further explore structure relationships
between these APIs and map to a matrix interpreted as the hand-
refined API-based feature graph. Third, a CNN-based classifier
is developed for the API-based feature graph classification.
Evaluations of a real-world dataset containing 3,697 malware
apps and 3,312 benign apps demonstrate that selected API
feature is effective for Android malware classification, just top
20 APIs can achieve high F1 of 94.3% under Random Forest
classifier. When the available API features are few, classifica-
tion performance including FPR indicator can achieve effective
improvement effectively by complementing our further work.
Index Terms—Android malware, feature selection, Structure

analysis, CNN-based classifier.

I. INTRODUCTION

With the rapid development of Internet, smartphone plays

more and more important role in people’s daily life. As one

of smartphone operating system, Android currently occupies

82.8% of smartphone market1. Many examples of Android

malwares(e.g., Zsone, Spitmo) have been released to the

public and cause security threat, including privacy leak and

property loss. Zsone [1] subscribed to paid content by sending

text messages without user awareness while Spitmo [2] stole

passwords of bank account by injecting into apps. Depending

on a report released by 360 Internet Security Center2, 7,573

million new Android malwares were intercepted in 2017 with

an average of 21,000 per day. Android malwares increase

explosively and pose a serious security threat to users thus

it is very important and urgent to detect Android malwares

effectively.

The primary detection method but widely used in industry

area is based on signature, which detected malware by match-

� Corresponding author: Ning Zheng(E-mail: nzheng@hdu.edu.cn).
1https://www.idc.com
2https://www.360.cn

ing signature. But this kind of method is limited to detect

unknown malware. In order to detect malware intelligently

and scalably, machine learning is a great idea. Searching for

interpretable and discriminative feature is critical in machine

learning method. Many researches [3]–[6] have demonstrated

effectiveness of API feature in detecting Android malware for

reason that API might reflect fine-grained behavior of Android

app. They preferred to select API related with probable

malicious behavior to distinguish malware from benign. [7]

summarized thousands of sensitive APIs related with danger-

ous permission. But they may be partially outdated nowadays.

[3] selected API which is used more frequently in malware

dataset than benign dataset. But it might select API rarely

occur in malware. [5] selected restricted, used permission and

suspicious API calls as a subset of feature set. But it is not easy

and time consuming for non-domain expert to recognize such

APIs. For the above analysis, we propose a novel selection

method for API feature related with the malware class in this

paper, which harmonically considers distribution of API using

in malware and benign dataset. We prefer the API that not

only occurs frequently in malware dataset but less frequently

in benign dataset. The naive idea is that feature related with

a class should have a frequent occurrence in the class but

unmeant occurrence in other class.

Taking further consideration, the API related with malware

also has a legitimate use in benign thus causing FP problem

(misclassify benign as malware). Hence we explore structure

relationship between APIs to obtain further difference, that is

APIs occur in the same API block or nearby API blocks have

invoking relationship. APIs in the same API block might be

gang for one malicious behavior. Besides, malicious behavior

generally is not conducted in a single block but more blocks

thus APIs in two nearby API blocks are also suspicious. In

classification, APIs and their two structure relationships are

mapped to a matrix interpreted as input API-based feature

graph hand-refined for CNN-based classifier. A convolution

filter perceives a subregion of the feature graph at a time and

extracts a subset of the API-based features, which is more

refine than the single API feature.

The main contributions of this paper are as follows:

• We propose a novel selection method for API feature

296

2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And
Communications/13th IEEE International Conference On Big Data Science And Engineering

2324-9013/19/$31.00 ©2019 IEEE
DOI 10.1109/TrustCom/BigDataSE.2019.00047

related with the malware class advancing in effective-

ness and not requiring domain knowledge, which har-

moniously considers occurrence frequency in malware

dataset and occurrence frequency difference between mal-

ware and benign dataset. The naive idea is that feature of

a class should be a frequent occurrence in the class but

unmeant occurrence in other class.

• In order to solve the FP problem caused by only using

API feature related with the malware class, we further

explore two suspicious structure relationships between

API features. API feature and their structure relationship

are mapped to a matrix interpreted as the hand-refine

feature graph for the designed CNN-based classifier.

• We conduct detailed experiments on a real-world dataset

consisted of 3,697 malware apps and 3,312 benign apps.

The results show that our selected API feature is effective

for Android malware detection under shallow classifier.

When the available API features are few, classification

performance including FPR indicator can achieve ef-

fective improvement effectively by complementing our

further work based on the API feature.

The remainder of this paper is organized as follows. Section

II discusses related work, Section III shows the overview of the

proposed method, Section IV and Section V elaborate feature

extraction and classification model respectively. Evaluation

is in Section VI, conclusion and discussion are followed in

Section VII.

II. RELATED WORK

To detect Android malware, the primary detection method

is based on the signature. For instance, [8] used Java code

and classes as signatures to detect malware. However, the

signature-based method is restricted to detect unknown mal-

ware. In fact, there are a lot of variant or novel malwares in

the real world. Hence researchers have proposed many other

methodes, we classify them related our work into three types

of method as follows.

A. Static feature combination based method

Many researches focused on intelligent Android malware

classification with machine learning technology in recent

years. They extracted discriminative static or dynamic features

from Android app and trained classifier to predict whether

the app is malware or benign. Extracting dynamic feature

is complex and time consuming, because each of the mal-

ware sample must be executed within a secure environment

for a specific time for monitoring the behavior [9]. Among

different kinds of static features, permission as preliminary

security mechanism of Android system is widely used in

many researches. However, [10] deemed intent feature is more

effective than permission and [3] deemed that API feature is

also more effective than permission. It can be explained that

the intent and API are more fine-grained than permission in

reflecting app behavior. Combining different types of static

features and training shallow classifier is a kind of prevalent

way [11]–[13]. [11] extracted API, permission and intent

message through static analysis on Android apps and k-means

clustering for these feature before the k-NN classification.

However, this kind of method is easy for attackers to evade.

The increasing variant or new malware and evasion technique

call for novel detection method. In this paper, we focus on

static API feature and develop a novel way to detect malware,

which can extract refine feature and is more difficult for an

attacker to evade.

B. Structure based method

Our work is also related with the method based on structure

analysis. [6] implemented a prototype system called Droid-

SIFT, which constructed weighted contextual API dependency

graphs and classified Android malware by graph matching.

[14] proposed an method to detect Android piggybacked

apps through sensitive subgraph analysis, which extracted five

features from the most sensitive subgraph and fed them to

random forest model. [15] implemented an automatic system

for classifying Android malware according to fregraph, which

constructed sensitive API related graph and conduct commu-

nity detection to divide the sensitive API related graph into

subgraph and classify Android malware family with subgraph

matching. Subgraph is a kind of refine feature than a single

API. These researches need designing a complex algorithm

to generate subgraph manually and causing a nuisance. In

this paper, we only perform structure analysis and obtain two

structure relationships between APIs based on API blocks

without subgraph partition. Instead, we design a CNN-based

classifier to extract refine feature and detect the app is malware

or benign.

C. Deep learning based method

Recently, deep learning method has shown state-of-the-

art performance for malware classification. They extracted

features suitable for deep learning model through static or dy-

namic analysis of Android app. [16] designed a Convolutional

Neural Network for system API-call sequences classification.

[17] first trained Recurrent Neural Network to extract features

of process behavior and then trained the Convolutional Neural

Network to classify feature images which are generated by

the extracted features from the trained RNN. [18] designed

a method based on convolutional neural network applied to

syscalls occurrences through dynamic analysis. [19] used more

than 200 features extracted from both static analysis and

dynamic analysis of Android app and adopted deep belief

network as the pre-trained neural network. [20] built deep

learning model to learn features from five types of features

through static analysis of Android apps and then feed them to

the SVM model. [21] proposed to convert opcodes sequences

into images and used convolutional neural network to detect

malware. Different from these work, we extract API features

related with the malware class and their structure relation-

ship, map them to a matrix interpreted as the API-based

297

Decompile
Smali
code

API feature

BenignAndroid apps

API feature
selection

Two structure
relationships

Structure relationship
analysis

Malware

API feature
API feature
selection

Two structure
relationships

Structure relationship
analysis

Feature extraction

Decompile
Smali
code

Preprocessing

Classification

API-based
 feature graph CNN-based classifier

Fig. 1: The framwork of proposed method.

feature graph hand-refined. A Convolution Neural Network

based classifier is designed for the API-based feature graph

classification.

III. OVERVIEW

The framework of our proposed method is shown in Fig.

1. It mainly includes three phases, preprocessing, feature

extraction and classification. In the preprocessing phase, we

use Apktool tool3 to decompile the dex file of Android App

into readable Smali code. And in the feature extraction phase,

we extract API related with the malware class and perform

structure analysis to obtain two structure relationships between

them by traversing the Smali code. Finally in the classification

phase, API features and their two structure relationships are

mapped to a matrix as input feature graph hand-refined for

CNN-based classifier to detect whether the app is benign

or malware. We mainly elaborate feature extraction part and

classification part in the following.

IV. FEATURE EXTRACTION

A. API feature selection

In Android malware classification, we are more concerned

about features related with the malware class. However, using

traditional feature selection method like mutual information,

the selected feature is not strictly related with the malware

class. This paper proposes a novel selection method for API

feature related with the malware class, which harmonically

considers distribution of API using in malware and benign

dataset. Based on two considerations, one is the occurrence

frequency in malware dataset and the other is the occurrence

frequency difference between malware and benign dataset. The

naive idea is that feature of a class should have a frequent

occurrence in the class but unmeant occurrence in other class.

Taking the two considerations into account, each API can get

a relation coefficient from 0 to 1. We use following terms to

evaluate the relation coefficient of API Si.

• CM(Si): The number of apps using Si in malware dataset.
• CB (Si): The number of apps using Si in bengin dataset.
• MR(Si): The ratio of apps using Si to the total number
of malware. MR(Si) is calculated with Equation (1).

3https://ibotpeaches.github.io/Apktool/

MR(Si) =
CM(Si)

TM(Si)
(1)

In Equation (1), TM is the total number of malwares. From

probability point of view, MR can be interpreted as conditional

probability of Si used in malware, namely P(Si|Mal).
• BR(Si): The ratio of apps using Si to the total number
of bengins. BR(Si) is calculated with Equation (2). BT
is the total number of bengins.

BR(Si) =
CB(Si)

BT (Si)
(2)

• MBR(Si): This term measures the occurrence frequency

difference of Si between malware and bengin. MBR(Si)
is calculated with Equation (3)

MBR(Si) =
MR(Si)

MR(Si) +BR(Si)
(3)

For Equation (3), MR and BR can be obtained by Equa-

tion (1) and Equation (2) respectively. MBR can measure

occurrence frequency difference of Si using between malware
and bengin. From the probability point of view, MBR can be

interpreted as conditional probability that how many of total

apps using Si belong to malware, namely P(Mal|Si).
There are a few problems if only consider the MR or MBR.

On the one hand, high MR of the Si is not enough to guarantee
its high relevance for reason that benign apps might also

use these APIs frequently. On the other hand, only consider

MBR of Si might select some APIs rarely used in malware
and benign. In that two cases, selected API feature cannot

effectively distinguish malware from benign. We use harmonic

average function to integrate the MR and MBR and obtain

the relation coefficient. Furtherly, we can allocate weights to

set bias for MR and MBR. For the above analysis, relation

coefficient of API Si is calculated as follows.

RC(Si) =
(1 + α2) ×MBR(Si) ×MR(Si)

α2 ×MBR(Si) +MR(Si)
(4)

In Equation (4), parameter α measures relative importance
of MR to MBR. MR has a greater impact when α > 1 while

MBR has a greater impact when α < 1. In particular, MR

can hardly affect the final result if α is very small, which is
similar to select API feature only with occurrence difference

298

TABLE I: Structure relationship difference of three API pairs in malware and benign

API Pair
Malware Benign

Total apps Structure related Ratio Total apps Structure related Ratio

sendTextMessage-euquals 2046 1307 63.8% 118 15 12.7%

sendTextMessage-valueOf 2019 336 16.6% 118 11 9.3%

equals-valueOf 2079 708 34.0% 565 7 1.2%

frequency between malware and benign. By the same token,

MBR can hardly affect the final result if α is very big, which is
similar to select API feature only with its occurrence frequency

in malware dataset.

B. Structure relationship analysis

API feature related with the malware class also has legiti-

mate use in benign thus causing FP problem (misclassify be-

nign as malware). In addition, simple feature pattern of using

API or not is easy to be evaded by an attacker. So we perform

structure analysis based on API block to explore structure

relationships between APIs and obtain further difference. In

this paper, a segment that begins with .method and ends with
.end method in Smali code is called an API block. As is shown
in Listing 1, there are two API blocks of a malware in our

collected dataset, one is send and the other is activate.

Listing 1: An example of two API block

Block1:
.method public send
invoke− static , Ljava/ lang / String ;−>valueOf
invoke−virtual / range , Landroid/ telephony /

SmsManager;−>sendTextMessage
...

.end method

Block2:
.method public activate
invoke−virtual , Ljava/ lang / String ;−>equals
invoke−virtual , Lcom/software/ application /Msg;−>

send
...

.end method

We mainly analyze two structure relationships based on API

block. One is APIs occur in the same API block, which is

also used in [4]. For example, valueOf and sendTextMessage
have the first relationship since they occur in the same block

send. APIs in one API block might be gang for one malicious
behavior. Generally, malicious behavior is not implemented

in a single block but more blocks. So APIs occur in nearby

API blocks that have invoking relationship is also suspicious.

For example, equals and sendTextMessage have the other
relationship. Taking the three APIs as an example to show the

structure relationship difference between malware and benign.

A statistic on our collected dataset consisted of 3,312 benigns

and 3,697 malwares is shown in TABLE I. 2,046 malwares

use API pair of sendTextMessage and equal, of which 1,307
malwares have the structure relationship between the API

pair. And there are also 118 benigns using the API pair of

sendTextMessage and equal, but only 15 benigns have the
structure relationship between them. Thus it can be seen that

structure relationship can provide further difference for us to

distinguish malware from benign in this case.

C. API-based feature graph

After obtaining API features and two structure relationships

between them, we map them to a matrix R as input feature

graph for CNN-based classifier.

We divided the R into three parts, diagonal part, lower

triangular part and upper triangular part. The diagonal part

records the API feature using, lower triangular part records the

first structure relationship and upper triangular part records the

second relationships. The eigenvalue is 1 if the corresponding

feature exists otherwise is 0. After that, API using knowledge

of app is fully conveyed in the R. For CNN-based classifier, R

can be interpreted as an API-based feature graph hand-refined.

When using CNN-based classifier for the API-based feature

graph classification, a convolution filter perceives a subregion

of the feature graph at a time and extracts a subset of the

API-based features, which is more refine than the single API

feature.

V. CLASSIFICATION

We design a CNN-based classifier for the API-based feature

graph classification. The architecture of CNN-based classifier

is shown in Fig. 2. It is mainly consisted of feature selection

phase and classification phase. The feature selection phase

only employs one convolution layer but has many convolution

filters. Each convolution filter slides step by step on the feature

graph to generate a neuron matrix. After convolution, ReLU

activation function [22] which is denoted as Max(0, x) is

employed due to its low computation of learning process.

Convolution layer seems to select features with an idea of

global search, because every subregion of input is explored

by sliding convolution filter. However, not all subregions

are effective for classification task hence pooling layer is

connected behind convolution layer to select critical neurons.

299

API-based
 feature graph

Drop out

Malware

Benign

Convolution
Max Pooling

S
oftM

ax

Full C
onnection

Feature Selection Classification

Fig. 2: The architecture of CNN-based classifier.

Classification layer is consisted of full connected hidden

layer and full connected output layer. Neurons arrange with

form of a matrix in the convolution layer and they need

to be flattened before the classification layer. In order to

avoid over-fitting, we design a dropout regularization rate p%

after the full connected hidden layer, which means neurons

with a probability of (1 – p%) are abandoned [23]. SoftMax

classifier is applied in the full connected output layer and

output normalized prediction probabilities of malware and

benign class.

During the process of learning, we use cross-entropy [24]

as loss function and ADAM [25] as optimization algorithm.

VI. EXPRIMENT

In this section, we first introduce our dataset collected from

real-world and then do three sets of expriment to evaluate

our method based on the dataset. The first set of expriment

evaluates our selection method for API feature (Section IV-A).

The second set of expriment evaluates our overall method

proposed. And run-time overhead of feature extraction is

calculated in the end.

A. Expriment setup

Our method is evaluated on a real-world dataset contain-

ing both Android malware and benign apps. The malware

dataset contains 3,697 apps collected from virusshare4. And

the benign dataset is collected from Google Play5 and contains

3,312 apps from 32 different categories. All experiments are

performed under the environment of 64 bit Windows 10.0

operating system with Intel(R) Core(TM) i5-8250U CPU @

1.60 GHZ plus 8G of RAM. All our evaluation performance

indicators are shown in TABLE II.

4https://virusshare.com
5https://play.google.com/store/apps

TABLE II: Descriptions of the used indicators

Indicators Abbr. Descrptions

True Positive FP
Number of apps misclassified

as malware

True Positive TP
Number of apps correctly

classified as malware

False Negative FN
Number of apps misclassified

as bengin

True Negative TN
Number of apps correctly

classified as bengin

Accuracy Acc (TP+TN)/(TP+TN+FP+FN)

Recall Rate R TP/(TP+FN)

FP Rate FPR FP/(FP+TN)

Precision P TP/(TP+FP)

F-measure F1 2PR/(P+R)

B. Evaluation of our selection method for API feature

As introduced in Section IV, each API can get a MR, MBR

and RC value. Fig. 3 (a) shows MR, MBR and RC of top-300

APIs with α = 1. From Fig. 3 (a), we observe that RC of the

API is almost average of the MR and the MBR generally. It is

worth noting that API with high MBR does not always have

high RC, and API with low MR does not always have low

RC. It can be illustrated that our method can take both MR

and MBR into full consideration to assess the relevance of the

API to the malware class.

We can obtain top-k API feature subsets from results ranked

by the RC value. Varying k, we have API feature subsets in

different sizes. SC of top-100 APIs decrease rapidly, so we

vary k from 10 to 100 by increasing 10 at a time to obtain

the API feature subset. Random Forest [26] classifier are

300

0 50 100 150 200 250 300
API Count

0

0.2

0.4

0.6

0.8

1
Va

lu
e

MR
MBR
RC

(a) RC distribution of API

10 20 30 40 50 60 70 80 90 100
API feature count

72%

76%

80%

84%

88%

92%

96%

100%

Ac
c

=0.5
=1.0
=1.5

Difference[3]

(b) Acc

10 20 30 40 50 60 70 80 90 100
API feature count

72%

76%

80%

84%

88%

92%

96%

100%

F1

=0.5
=1.0
=1.5

Difference[3]

(c) F1

Fig. 3: Evaluation of our selection method for API feature.

employed to evaluate the classification performance, because

it shows outstanding classification performance among numer-

ous shallow classifiers based on our best knowledge. Each app

is first represented as a feature vector which eigenvalue is 1 if

the app uses API otherwise is 0. Then the classification labels

of malware are attached with 1 while benign apps are attached

with -1. Once obtaining feature vectors and labels of training

apps, classification model can be trained with the help of

scikit-learn library6. After that, test samples can be predicted

malware or benign via the trained classification model. In order

to have a reliable performance measure and fair comparison,

all 3,312 benign apps and 3,697 malware apps are mixed

together and evaluated via tenfold cross validation.

In order to evaluate our selection method comprehensively,

we set parameters α in Equation (4) as 0.5, 1.0 and 1.5 respec-
tively to compare their classification performances. In addition,

we also compare our method with the selection method in [3]

which employed used usage difference in malware dataset and

benign dataset. The Acc and F1 results are shown in Fig. 3

(b) and (c) respectively, the x-axis indicates the number of

API feature and the y-axis indicates Acc or F1 indicator. The

results of F1 are consistent with those of Acc, because malware

and benign apps in our data set are almost balanced. Our

selected API features have effective classification performance

generally, especially only top-20 API features can achieve high

F1 of 94.3% with α = 1.0. Parameter α do affect classification
performance especially when the number of API feature is

small. When the number of API feature is less than 60, The

classification performance under α = 0.5 is better than that
under α = 1.0 or 1.5. However, classification performances

under different parameters become comparative as the number

of API feature increases. Moreover, our selection method

outperforms the method of [3]. In conclusion, evaluation

results demonstrate that our proposed selection method for

API feature is effective for Android malware classification.

6https://scikit-learn.org

C. Evaluation of our overall method proposed

Evaluation of our overall method proposed has two parts,

one is illustrating our further work based on API and the other

is comparing our proposed method with two baseline methods.

1) Evaluation of our further work based on API feature:
Besides selecting API feature related with the malware class,

we further explore two structure relationships between them.

Selected API feature and their structure information are

mapped to an API-based feature graph which is classified by a

CNN-based classifier. The expriment details of the CNN-based

classifier are as follows. 32 or 8 convolution filters which size

of 5 × 5 and step of 1 are used in the single convolution

layer. Sampling size of max pooling layer is 2 × 2 and step

is 2. And neurons turn to 1024 after the fully connected layer,

the dropout regularization rate is set as 50%. Our CNN-based

classifier is developed using TensorFlow framework [27]. The

network weights are randomly initialized using the default

TensorFlow initialization and are optimized with a learning

rate of le-6 for 20,000 iterations, using a mini-batch size of

50. All the 3,312 benign apps and 3,697 malware apps are

mixed together and evaluated via tenfold cross validation.

For API feature selected with α = 1.0 in the first set of

experiment, we further complement the structure relationship

and employ the CNN-based classifier. The results are shown

in Fig. 4 (a) and (b), the x-axis is the number of API feature

and the y-axis is Acc or FPR results, the API legend indicates
method in the first set of experiments (Section VI-B) and the

API+R legend indicates our further work method based on API
feature. We can observe that Acc and FPR indicators of the

API+R method outperform those of the API method especially
when the number of API feature is small. For example, the

API+R method achieves 7.4% improvement in Acc indicator

and 4.3% improvement in FPR indicator when only use top-

10 API features. When the available API features are few, our

further work can obtain effective improvement. Moreover, the

improved FPR indicator demonstrates our motivation of struc-

ture relationship analysis is achieved. However, classification

performance of the API+R method become comparative with

301

10 20 30 40 50 60 70 80 90 100
API feature count

84%

88%

92%

96%

100%
Ac

c

API
API+R

(a) Acc

10 20 30 40 50 60 70 80 90 100
API feature count

0%

4%

8%

12%

FP
R

API
API+R

(b) FPR

ACC F1 R
92%

93%

94%

95%

96%

97%

98%

99%

100%
permission[13]
API[3]
Our method

(c) Comparison of our method with two baseline
methods

Fig. 4: Evaluation of our overall method proposed

that of the API method as the number of API feature increases.
When the available API features are enough and sufficiently

distinguishable, the API method is more lightweight.

2) Comparison with two baseline methods: We compare
our method with two baseline methods proposed by [13] and

[3]. [13] proposed a method for malware detection based on

requested permission feature. [3] proposed a method for mal-

ware detection based on API feature which selected by usage

difference in malware and benign dataset. They both used

shallow classification model. The classification performances

of our method and the two baseline methods are illustrated in

Fig. 4 (c). We can observe that our method outperforms the two

baseline methods. Since API feature is more fine-grained than

permission in reflecting app behavior. Moreover, we improve

the selection method for API feature comparing with [3],

complement structure relationship and use deep CNN-based

classifier.

D. Run-time overhead of feature extraction

For run-time overhead of feature extaction, we mainly

analysis two cases as follows.

• API. We scan the whole smali files to extract API feature.

• API + R. We scan the whole smali files to extract not

only API feature but also their structure relationships by

the way.

The average run-time overhead of different Smali size in our

collected dataset is shown in TABLE III. Two observations

are obtained from TABLE III. First, run-time overhead is

within 10 seconds when Smali size is less than 20M while

run-time overhead increases sharply as Smali size becomes

bigger. We draw conclusion that run-time overhead of feature

extraction is sensitive to Smali size because scanning the

whole smali files is exponentially complex. Second, extracting

structure relationship of API feature results in extra run-time

overhead. But most of time are still spent in scanning the

whole Smali files, extracting structure relationship by the way

only increases a few seconds. So structure relationship analysis

can be adopted when using API feature. In conclusion, API

feature is expensive in run-time overhead especially when

the Smali size is big. However, once extract API features,

extracting structure relationship between them does not result

in too much extra run-time overhead.

TABLE III: Average run-time overhead of different Smali size

Feature
Smali size

0-10M 10-20M 20-50M 50-100M

API 1.1s 8.7s 21.5s 43.3s

API+R 1.8s 11.3s 25.6s 48.8s

VII. CONCLUSION AND DISCUSSION

In this section, we first sketch our work and then explain

reasons why our method is effective in detecting Android

malware. Limitations of our method are illustrated in the end.

In this paper, we propose a novel method for Android

malware classification based on API feature. We select API

feature related with malware and explore structure relationship

between these APIs, then map them to a matrix as input API-

based feature graph hand-refined for CNN-based classifier. For

API feature selection, we harmonically consider occurrence

frequency in malware and occurrence frequency difference

between malware and benign using harmonic average function.

Evaluations show that selected API feature can effectively

distinguish malware from benign app, just top-20 APIs can

achieve high F1 of 94.3%. However, APIs related with the

malware class can also have a legitimate uses in benign thus

causing FP (misclassify benign as malware) problem. Hence

taking a step forward in this paper, we explore structure

relationship between them and obtain further difference, that

is APIs are in the same API block or nearby API blocks that

have invoking relationship. API features and their structure

relationships are mapped to a matrix as input feature graph

302

for CNN-based classifier. When the available API features are

few, classification performance including FPR indicator can

achieve effective improvement effectively by complementing

our further work based on the API feature.

The reason why our method can achieve effective perfor-

mance in Android malware classification is common roles of

API feature selection, structure relationship analysis and CNN-

based classifier. First, we can obtain API feature related with

malware more accurately through harmonically considering

distribution of API using in malware and benign. Second,

explore structure relationship between API feature can provide

further difference between malware and benign to improve FP

problem. Third, the convolution filter of CNN-based classifier

perceives a subregion of the feature graph at a time and

extracts a subset of the API-based features, which is more

refine than the single API feature.

Our method is also subject to several limitations. It is

difficult to obtain actual API using and their structure rela-

tionships once app is encrypted or obfuscated. In that case,

dynamic analysis can be adopted in order to obtain invoking

structure relationship between APIs. In addition, training effec-

tive CNN-based classifier is time-consuming and experience

needed.

VIII. ACKNOWLEDGMENT

This work is funded by the Cyberspace Security Major

Program in National Key Research and Development Plan

of China under grant No. 2016YFB0800201, the Natural

Science Foundation of China under grant No. 61572165,

61702150 and 61803135, the State Key Program of Zhejiang

Province Natural Science Foundation of China under grant

No. LZ15F020003, the Key Research and Development Plan

Project of Zhejiang Province under grant No. 2017C01065 and

the Public Research Project of Zhejiang Province under grant

No. LGG19F020015.

REFERENCES

[1] C. A. Castillo, “Android malware past, present, and future,” White Paper
of McAfee Mobile Security Working Group, pp. 1–16, 2011.

[2] N. Etaher, G. R. S. Weir, and M. Alazab, “From zeus to zitmo: Trends
in banking malware,” in IEEE Trustcom/bigdatase/ispa, 2015.

[3] Y. Aafer, W. Du, and H. Yin, “Droidapiminer: Mining api-level features
for robust malware detection in android,” in International Conference
on Security & Privacy in Communication Systems, 2013.

[4] S. Hou, Y. Ye, Y. Song, and M. Abdulhayoglu, “Hindroid: An intelligent
android malware detection system based on structured heterogeneous
information network,” in Acm Sigkdd International Conference on
Knowledge Discovery & Data Mining, 2017.

[5] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, “Drebin: Effective and explainable detection of android
malware in your pocket.” in Ndss, vol. 14, 2014, pp. 23–26.

[6] Z. Mu, D. Yue, H. Yin, and Z. Zhao, “Semantics-aware android malware
classification using weighted contextual api dependency graphs,” in
Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, 2014.

[7] K. W. Y. Au, F. Z. Yi, H. Zhen, and D. Lie, “Pscout: Analyzing the
android permission specification,” in Acm Conference on Computer &
Communications Security, 2012.

[8] Z. Min, M. Sun, and J. C. S. Lui, “Droidanalytics: A signature based
analytic system to collect, extract, analyze and associate android mal-
ware,” in IEEE International Conference on Trust, Security and Privacy
in Computing and Communications, 2013.

[9] P. V. Shijo and A. Salim, “Integrated static and dynamic analysis for
malware detection,” Procedia Computer Science, vol. 46, pp. 804–811,
2015.

[10] A. Feizollah, N. B. Anuar, R. Salleh, G. Suarez-Tangil, and S. Furnell,
“Androdialysis: Analysis of android intent effectiveness in malware
detection,” Computers & Security, vol. 65, no. C, pp. 121–134, 2017.

[11] D. J. Wu, C. H. Mao, H. M. Lee, and K. P. Wu, “Droidmat: Android
malware detection through manifest and api calls tracing,” in Information
Security, 2012.

[12] N. Peiravian and X. Zhu, “Machine learning for android malware detec-
tion using permission and api calls,” in IEEE International Conference
on Tools with Artificial Intelligence, 2014.

[13] W. Wei, W. Xing, D. Feng, J. Liu, and X. Zhang, “Exploring permission-
induced risk in android applications for malicious application detection,”
IEEE Transactions on Information Forensics & Security, vol. 9, no. 11,
pp. 1869–1882, 2017.

[14] F. Ming, J. Liu, W. Wei, H. F. Li, Z. Tian, and T. Liu, “Dapasa:detecting
android piggybacked apps through sensitive subgraph analysis,” IEEE
Transactions on Information Forensics & Security, vol. 12, no. 8, pp.
1772–1785, 2017.

[15] F. Ming, J. Liu, X. Luo, C. Kai, T. Chen, Z. Tian, X. Zhang, Q. Zheng,
and T. Liu, “Frequent subgraph based familial classification of android
malware,” in IEEE International Symposium on Software Reliability
Engineering, 2016.

[16] R. Nix and J. Zhang, “Classification of android apps and malware using
deep neural networks,” in Neural Networks (IJCNN), 2017 International
Joint Conference on. IEEE, 2017, pp. 1871–1878.

[17] S. Tobiyama, Y. Yamaguchi, H. Shimada, T. Ikuse, and T. Yagi,
“Malware detection with deep neural network using process behavior,”
in Computer Software and Applications Conference (COMPSAC), 2016
IEEE 40th Annual, vol. 2. IEEE, 2016, pp. 577–582.

[18] F. Martinelli, F. Marulli, and F. Mercaldo, “Evaluating convolutional
neural network for effective mobile malware detection,” Procedia Com-
puter Science, vol. 112, pp. 2372–2381, 2017.

[19] Z. Yuan, Y. Lu, Z. Wang, and Y. Xue, “Droid-sec: Deep learning in
android malware detection,” Acm Sigcomm Computer Communication
Review, vol. 44, no. 4, pp. 371–372, 2014.

[20] N. Mclaughlin, J. M. D. Rincon, B. J. Kang, S. Yerima, P. Miller,
S. Sezer, Y. Safaei, E. Trickel, Z. Zhao, and G. J. Ahn, “Deep android
malware detection,” in Acm on Conference on Data & Application
Security & Privacy, 2017.

[21] J. Zhang, Z. Qin, H. Yin, L. Ou, and Y. Hu, “Irmd: malware variant
detection using opcode image recognition,” in Parallel and Distributed
Systems (ICPADS), 2016 IEEE 22nd International Conference on.
IEEE, 2016, pp. 1175–1180.

[22] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in International Conference on International
Conference on Machine Learning, 2010.

[23] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from overfit-
ting,” Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929–
1958, 2014.

[24] R. Y. Rubinstein and D. P. Kroese, Applications of CE to Machine
Learning, 2004.

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
Computer Science, 2014.

[26] A. Cutler, D. R. Cutler, and J. R. Stevens, “Random forests,” Machine
Learning, vol. 45, no. 1, pp. 157–176, 2004.

[27] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, and M. Isard, “Tensorflow: A system for large-
scale machine learning,” 2016.

303

