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Abstract—The widespread of location-based social networks
has generated massive check-in sequences in chronological order.
Forecasting check-in sequences is significant while challenging
due to the check-ins’ sparsity problem. Existing methods have
followed closely to incorporate spatial and temporal context to
alleviate the data sparsity problem, but neglect the semantic
sequential correlation between check-ins. Howbeit, incorporating
the semantic sequential correlation between check-ins for next
POI recommendation encounters the challenges of semantic se-
quential correlation measurement and sequential behavior mod-
eling. To measure the semantic sequential correlation, we apply
a semantic sequential correlation calculation model based on a
semantic correlational graph that incorporates the time intervals’
influence to calculate the semantic sequential correlation. Then,
we apply a novel Long Short-Term Memory (LSTM) framework
equipped with two additional semantic gates that takes the
additional semantic sequential correlation as the extra input to
capture users’ sequential behaviors and model their long short-
term interest with the restrictions in the semantic level. Finally,
we cluster users into different groups as an improvement of our
model to achieve a more accurate recommendation. Our proposed
model is evaluated on a real-world and large-scale dataset and the
experimental results demonstrate that our method outperforms
the state-of-the-art methods for next POI recommendation.

Index Terms—Location-based social networks, next POI rec-
ommendation, LSTM

I. INTRODUCTION

With the flourishing of Location-based Social Networks
(LBSNs), such as Gowalla, Foursquare and Yelp, considerable
check-in data has been generated. For instance, there are more
than 12 billion check-ins generated by 50 million people in
Foursquare', which leads to a large opportunity to analyze
users’ behaviors and preferences about POIs [1]. To improve
users’ engagement through sequential dependence of users’
check-ins, and to offer a better service in making geo-targeted
advertisements and coupon delivery, it is significant for both
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Fig. 1. A simple example of user’s check-in sequence in the semantic level

users and merchants to get the most likely POI in the next
step, and this problem has attracted a lot of attention recently
[2], [3]. Different from the general POI recommendation that
focuses on forecasting users’ preferences on POIs, the next
POI recommendation is based on the users’ historical check-
ins in chronological order to satisfy recommendations which
consider not only users’ preferences, but also the dependence
between POlIs.

However, predicting the next POI is challenging for two
reasons: (1) data sparsity. Even though LBSNs generate a
large number of check-ins, the number of check-ins generated
by one person is very limited. For example, the density of
data that can be used for POI recommendation is usually
around 0.1% [4], while the density of Netflix data for movie
recommendation can reach 1.2% [5]. Furthermore, the next
POI recommendation is more sensitive to the data sparsity
problem as sparse check-in sequences are more difficult to
predict. (2) sequential behaviors modeling. Modeling users’
behaviors by capturing the relations between users’ actions
is the key part of the next POI recommendation, effectively
utilizing the correlation between sequential data affects the
recommendation performance largely.

To tackle the above challenges, earlier methods of next POI
recommendation rely on modeling users’ mobility patterns and



the sequential correlation between POIs by Markov Chain
[6], [7]. Cheng et al. [6] propose a personalized Markov
Chain taking account the spatial constraint at the same time,
and Lv et al. [7] investigate the effect of living habits on
a hidden Markov model to predict users’ mobility patterns.
However, existing Markov Chain methods is limited because
of the difficulty of capturing longer sequential context and high
computational complexity. Afterwards, due to recurrent neural
network (RNN)’s ideal effect of modeling sequential data,
Liu et al. [8] propose a model named ST-RNN which aims
to predict users’ mobility patterns with spatial and temporal
constraints, and Kong et al. [9] propose a Spatial-Temporal
Long Short-Term Memory (ST-LSTM) model which naturally
combines spatial-temporal influence into LSTM to mitigate the
problem of data sparsity. Nevertheless, all previous approaches
neglect the powerful impact of semantic sequential correlation
between check-ins.

The semantic sequence is a representation of check-in
sequences in the semantic level. For instance, from a sequence
shown in Fig. 1: {Home, Subway, Company, Restaurant,
Company, Gym, Home}, which selected from check-ins, it
is easy to imagine this user’s daily trajectory and we can find
that this user’s check-in behaviors have a certain semantic cor-
relation, and the semantic correlation between check-ins vary
from pairs to pairs, e.g., users are more likely to go to the gym
from the company than vice versa, because users are inclined
to exercise after work. The greater the semantic correlation,
the more likely the user will choose, this observation reveals
the importance of semantic correlation. While the semantic
sequential correlation is the correlation between all adjacent
categories of a semantic sequence, which is expressed as a
sequence of correlation in chronological order.

This paper presents an in-depth investigation on incorporat-
ing the semantic sequential correlation of check-in sequence
to boost the next POI recommendation performance. To begin,
we measure the semantic sequential correlation with a seman-
tic correlational graph, in terms of the check-ins’ categories as
semantic information, which incorporates the time intervals’
influence to it. After that, we use a semantic sequential based
LSTM (LSTM-S) equipped with two additional semantic gates
to capture users sequential behaviors and model their long
short-term interest with the restrictions in the semantic level.
Beyond that, in order to make our model more representative,
we utilize the K-means method to cluster users into distinct
groups then fit each group to the corresponding model we
proposed.

Overall, the contributions of this paper can be summarized
as follows:

o We utilize a semantic correlational graph to get the
semantic correlation of all the adjacent categories that
facilitates the acquisition of the semantic sequential
correlation. This method first splits each user’s check-
in sequence into one-to-one sequences (e.g., transform
{Company, Gym, Home} into {Company, Gym} and
{Gym, Home}), then traverse the semantic correlational
graph to obtain the number of directed edges and the

weight of each directed edge defined by the time intervals
of each one-to-one sequence. And then, the semantic
correlation is generated from our semantic sequential
correlation calculation model.

e We apply a novel LSTM variant LSTM-S that incorpo-
rates two extra semantic gates to capture the semantic
sequential correlation of check-in sequences. Instead of
directly utilizing semantic sequences to obtain the corre-
lation, we explicitly model the semantic irrelevancy as the
semantic interval, and then take the additional semantic
interval sequence as the input of semantic gates.

o In order to achieve a more accurate recommendation, we
cluster users into different groups using the K-means
method based on the phenomenon that if users have
similar preferences, their mobility patterns will tend to be
similar, then fit each group into the corresponding model
we proposed to boost our method’s performance.

o We evaluate the proposed method by detailed experiments
on a large-scale Foursquare dataset and the experimental
result demonstrates the superiority of using our method.

II. RELATED WORK

In this section, we first make a literature review of POI
recommendation, then we discuss the relationship between our
proposed model and previous work.

A. POI Recommendation.

POI recommendation is a significant task in LBSNs and
most related to our work, it focuses on recommending POIs
based on each user’s check-in history with geographic infor-
mation and no explicit rating information. In order to improve
the performance of POI recommendation, lots of recent work
has tried to mine more information from spatial context,
temporal context, social context and category context.

Spatial Context. Most recent studies [10] [11] [12] have
tried to incorporate the spatial context of check-ins due to the
strong correlation between check-in activities and geographical
distance. In order to improve the recommendation accuracy,
Liu et al. [10] propose a new method to incorporate location-
level influence and region-level influence based on Weighted
Matrix Factorization (WMF) to deal with the data sparsity
problem. For the sake of capturing the spatial clustering
phenomenon (i.e., POIs visited by same users are likely to be
in the same region [13]), Lian et al. [11] integrate geographical
impacts through users’ activity area modeling and geospatial
impact propagation. Ye et al. [12] utilize a Poisson Factor
Model based on geographical information to jointly learn both
geographical preferences and interest preferences for users
because these two preferences will interact with each other.

Temporal Context. On the one hand, different users may
behave differently at different time, on the other hand, different
POIs have various business hours and peak periods. Therefore
it’s pivotal to utilize temporal context to improve the accuracy
of recommendation. Yuan et al. [14] recommend POIs for
a given user at a specified time in a day through a new
collaborative recommendation model that is able to incorporate



temporal information. Gao et al. [15] use a time-enhanced
Matrix Factorization (MF) model based on the observation
that users’ check-in behaviors vary from time. Zhao et al. [3]
propose a time-aware trajectory embedding model to incor-
porate periodical temporal preference and dynamic personal
preference based on distributed representation learning.

Social Context. Li et al. [16] use a two-step POI recommen-
dation framework that (i) learns potential locations from users
friends and (ii) incorporates potential locations into WMF to
overcome the cold-start problem. Zhang et al. [17] integrate
social factors into geographic information by using a friend-
based collaborative filtering, where the similarity between
friends is computed based on the distance between their
residences.

Category Context. Zhang et al. [18] leverage the cumu-
lative distribution of categories calculated by users’ check-in
frequency as the category impact in recommendation. Li et al.
[16] calculate the categories’ weights by users’ preferences to
affect the recommended score obtained by MF.

B. Connection to Prior Work.

We focus on successive POI recommendation to predict the
most likely POI in the next step.

Earlier next location recommendation methods rely on mod-
eling user mobility pattern and sequence correlation between
POIs by Markov Chain [6], [19], but it is questionable because
the sequential transitions are subject to first-order transitions
owing to sparse data and computational complexity, also the
particular structure of Markov Chain leads to the limitation of
capturing longer sequential context. Another straightforward
approach to predict the most likely visit location in the
next step is taking advantage of distributed representation
learning, which incorporating users’ time periodicity factor
[3]. Nevertheless, this method only models the periodicity of
user behavior in the time level and neglects other dependency
between check-ins.

Thus, better approaches based on RNN proposed due to
its ideal effect of modeling sequential data, like language
modeling and next-basket recommendation. In order to derive
a better solution, many works have been presented. Liu et al.
[8] propose a model called ST-RNN to model the temporal
context and spatial context for next location recommendation
by utilizing a time window in each RNN cell as well as time-
specific and distance-specific transitions matrices.

However ordinary RNN model proposed before cannot
ideally play the function of time-specific and distance-specific
transitions matrices because of partitioning intervals into dis-
crete bins to adapt the data sparsity problem. Furthermore, it’s
difficult to select the proper time window widths for different
applications and the gradient vanishing problem will also arise.

Gate mechanism introduced by LSTM solves the gradient
vanishing problem and can improve the accuracy of POI
recommendation. Kong et al. [9] propose a Spatial-Temporal
LSTM model which naturally combines spatial-temporal in-
fluence into LSTM to mitigate the problem of data sparsity

and then employ an encoder-decoder manner which models
the contextual historic visit information.

Yet, most of the previous successive POI recommendation
methods focus only on the temporal sequential context and
spatial sequential context, ignoring the semantic sequential
correlation that can boost the prediction performance, we
use a semantic sequential correlation calculation model to
measure the correlation between adjacent check-ins’ categories
to get the semantic sequential correlation, and then we apply
a LSTM-S model with two additional semantic gates to incor-
porate the semantic sequential correlation calculated before to
boost our prediction performance.

III. THE PROPOSED MODEL

Before describing our model for the next POI recommenda-
tion, we start with a brief introduction to describe our model’s
architecture as a whole. Then, we elaborate two parts of our
model in detail, one is the semantic sequential correlation
calculation model, and another is the LSTM-S model which
incorporates the semantic sequential correlation as the extra
input. In the end, we introduce our improvement method via
K -means cluster.

A. Model Introduction

For a better representation, we first introduce some relevant
concepts.

o POIL A POI is a geographic location (such as a cinema
or a cafe) that has specific functions to satisfy users’
requirements. In our proposed model, POI contains three
attributes: unique identifier, geographic information (lat-
itude and longitude), and semantic information (category
information).

e Check-in. A check-in record is represented as a five-tuple
(u,v,t,d,c), which means that a user u visits a POI v
with geographic information d as well as category c at
time t.

e Check-in Sequence. A check-in sequence consists of a
user’s consecutive check-ins. The historical check-ins of
this user are utilized to be the contextual information of
predicting the next POI he/she is about to visit in the next
step.

« Semantic Sequence. A semantic sequence consists of the
category information extracting from check-in sequence
and meanwhile preserves its chronological order.

« Semantic Sequential Correlation. A semantic sequential
correlation is a correlation sequence containing corre-
lation between all adjacent categories of a semantic
sequence.

Assume that there is a set of m users U = {uq, uz, us, ...,
Um} and a set V. = {vy,v9,vs,...,0,} contains n POIs.
Each user in U has a unique historical check-in sequence
HY = {v}ﬁ,v%,vg,... _, (» Where t;_1 is the last time
this user checked in, ¢ — 1 is the length of this user’s
historical check-in trajectory, and vy’ indicates a user u visit
POI v at time ¢;. We define the semantic sequence C}* =

u
) Ut
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Fig. 2. A heat map of categories’ relevances. Categories = C1: Bar, Ca:
Catering, C3: Education, Cy: Entertainment, C5: Events, C¢: Exercise, C'7:
Shop, Cg: Traffic, Cg: Travel, C'1o: Residence, C71: Others

{c}‘l,cgz, Ciyyees Cﬁ-,l} is extracted from H;*, in terms of the
semantic information of each vy;. Then our problem can be
defined as: given a user u and his/her previous ¢ — 1 check-
in records  v¢!, vy, Viny e, U }, we recommend a POI that
most likely to be visited in the next step for u with the help
of mining the semantic sequential correlation from C}.

In order to integrate the semantic sequential correlation into
the next POI recommendation problem to boost the perfor-
mance, the measurement of semantic sequential correlation
and the modeling of check-in sequence with the semantic
sequential correlation have become the urgent problems to be
solved.

Thus we divide the structure of our model into two parts:
semantic sequential correlation calculation model and the
LSTM-S model for the next POI recommendation, to tackle
the problems mentioned before. Also the improvement method
is introduced.

Semantic Sequential Correlation Calculation Model: In
this part, we measure the semantic sequential correlation
through traversing a semantic correlational graph which incor-
porates the time intervals’ influence to the semantic sequential
correlation calculation.

LSTM-S for the Next POI Recommendation: In this
part, We apply a LSTM variant incorporating two additional
semantic gates to take the semantic sequential correlation
calculated before to predict the most likely POI in the next
step.

Improvement Method: For the purpose of improving the
prediction performance of the next POI recommendation,
we use an extra part to illustrate the improvement method
of clustering users into different groups according to their
preferences.

B. Semantic Sequential Correlation Calculation Model

The dataset used in our paper contains 426 fine-grained
location categories which leads to a huge prediction space, in

Fig. 3. An example of semantic correlational graph based on two semantic
sequences: Cog i> Cs i> Cy A Cs £> Cs i) Cr i) Csg i> Cy L>
Cro 5 Coand Cy 2 Cy 5 C5 2 Cs B Cs 2 Cro 2 00
C1 i> C11 3) C10, the numbers on the arrows represent the time intervals

order to make check-ins’ categories more representative, we
aggregate them into 11 types inspired by [19]: Bar, Catering,
Education, Entertainment, Events, Exercise, Shop, Traffic,
Travel, Residence and Others. When we consider the next POI
recommendation problem in the semantic level, the correlation
between categories reflect the users’ mobility patterns. Fig. 2
plots the transition probabilities between our categories.

The original method of calculating the semantic correlation
is mainly based on statistics, in view of the hypothesis that
the higher the transition probability between two categories
in the semantic sequences, the higher the semantic correlation
of the two categories. However, it is inadequate to calculate
semantic correlation only considering the semantic transition
probabilities. For example, there will be large errors in the
calculation results when the statistical samples are insufficient.

Inspired by [2] that time intervals between users’ check-
ins are of significant importance in capturing the relations of
users’ actions, similarly, when we model users’ check-ins in
the semantic level, we also incorporate the time intervals’
influence when capturing the semantic sequential correla-
tion. In detail, we first leverage the semantic sequences to
construct a semantic correlational graph G, then categories
in the semantic sequences are represented as nodes in the
semantic correlational graph. And the transition between each
two categories is represented as a directed edge from the
previous node to the next node. We also call the directed
edge a semantic connected path because we only consider the
influence between two adjacent categories, same as the method
of calculating the semantic correlation using statistics. Finally,
the time interval of each transition is expressed as the weight
of the directed edge. Fig. 3 shows an example of a semantic
correlational graph.

In order to make our calculation process more simple and
clear, we introduce two rules of the semantic correlational
graph, explained as follows:

« If the weights of all the semantic connected paths between



two adjacent nodes are equal, then the more connected
paths between the two nodes, the greater their semantic
correlation, and vice versa.

o If the number of the semantic connected paths between
two adjacent nodes is equal, then the smaller the weight
of the semantic connected path between two nodes, the
greater their semantic correlation, and vice versa.

Based on the above rules, we traverse the semantic corre-
lational graph, then the calculation of the semantic sequential
correlation is detailed below, and the pseudocode is given in
Algorithm 1.

a) Given a check-in sequence set .S, each element in this
set can be defined as: S™ = {v}', v§,v¥, ..., v}'}, where u rep-
resents the user identifier, and S™ is the check-in sequence of
u, [ is the length of check-in sequence. For each sequence, we
first extract the semantic sequence from it and recorded as C*
={c},ch,...,c}'}, then we split C* into one-to-one sequences
set O™ {< ct,cy >, <cy, ey >, ..., <y, >}, the angle
brackets are used to emphasize the order of the sequence.

b) For each one-to-one sequence < c,cj,; > in O%, we
traverse GG to get the number of directed edges n from c} to
ci',, and the weight of each directed edge w. (1 < e < n)
representing the nomarlized consumed time. Since we only
consider the influence of the adjacent nodes, all the length of
our semantic connected paths is 1, so we calculate the total
length of the weighted semantic connected paths from cj' to
ciy 1 using the following formula:

L(ct,cly) = ) we (1)
e=1
Then the average length of the weighted path is calculated:

_ 1
L(cf,cf+1) = gL(C%C;LJA) (2)

c) In view of the relevant rules we proposed before, we
obtain that the average length of the weighted path is inversely
proportional to the semantic correlation, while the number of
weighted paths is proportional to the semantic correlation, thus
the semantic correlation is calculated as follows:

1 1
Rel(c,ci' ) = ng(n%
logy(n + 1) + L(c}, iy 1)

After we get the semantic correlation of each one-to-one se-
quence, we store these semantic correaltions in chronological
order to get each user’s semantic sequential correlation Seq"
from his/her check-in sequence, then store it to the semantic
sequential correlation set Seq.

3)

C. LSTM-S for the Next POI Recommendation

Normal LSTM [20] is an improved RNN model introducing
the gate mechanism, which can avoid the vanishing gradient
problem. A common LSTM unit is composed of a cell, an
input gate, an output gate and a forget gate. Given the input
x; at time ¢, the output of LSTM hidden layer /; is computed
by following functions:

it = 0(2tWai + he—1Whi + b;) S

Algorithm 1 Semantic Sequential Correlation Calculation
Algorithm
Input:
Semantic correlational graph G, check-in sequence set S
generated by all the users;
Output:
Semantic sequential correlation set Seg;
1: for each S* € S do
2:  Extract semantic sequence C*;
3 Split C'* into one-to-one sequences;
4: Store one-to-one sequences into set O%;
5
6

for each one-to-one sequence < ¢, ¢, ; >€ O" do
Traversing G to calculate the number of directed
edges n from category cf to category c,; and the
weight of each directed edge we;
7: if n > 0 then
Calculating the semantic correlation Rel(cj, c}', ;)
through Eq.(3);

9: else

10: Rel(c,ci 1) = 0;

11: end if

12: Store Rel(cj, ¢’ 1) into semantic sequential correla-
tion Seq“;

13:  end for

14 Store Seq" into Segq;
15: end for

16: return Seq;

fr = o(@Was + hy—1 Wiy + by) ®)
ot = 0(2tWao + ht—1Who + b,) (6)
C = tanh(xiWye + hi—1Whe + be) )
co=fi-ea1+i - C ®)

hy = oy - tanh(ct) )

We describe some definitions of these functions as follows:
the first hidden layer output A is equal to zero, o(-) means the
logistic sigmoid function, meanwhile tanh(-) is the hyperbolic
tangent function. i;, f;, o; reperesent the input, forget, and
output gate of the ¢-th object respectively, these gates keep
LSTM cell update, retaine, and discard data over time, and
in particular, input gate i; is utilized to choose the input
data, forget gate f; is utilized to decide which input data
should be forgotten, output gate o; is leveraged to decide
whether to produce current state. Its only two inputs: x; and
h; represent the input feature vector and the hidden output
vector respectively, b;, by, b, represent the corresponding bias
of each gate. Weight matrices Wy, Wy, Wyo, Wy are used
to connect inputs with different gates as well as the candidate
cell memory C. The cell update equation has two parts, one
is the updated previous cell state which has passed through
the forget gate, another is a new input state influenced by the
candidate cell memory C through an element-wise operation.
And finally hidden layer output is defined as an element-wise
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operation between output gate and cell state’s tanh nonlinear
transformation. In this standard model, x; is used to learn
the user’s current short-term interest, and c;_; contains users’
long-term preference.

Nevertheless, the data sparsity problem will cause the cell
of LSTM fails to learn well functioned gate, and through the
previous description, we can see that category contexts will
reflect users’ behavior patterns in the semantic level. When
we describe users’ check-in behavior in the semantic level,
the less compact the semantic correlation is, the less likely it
is to happen. Thus we visualize the semantic intervals between
all check-in sequences, as shown in Fig. 4, the horizontal axis
represents the semantic interval values of adjacent check-ins,
which means the size of semantic irrelevancy. We can see
that about 72.5% semantic intervals are less than 0.1, which
clearly reflects the phenomenon that users’ continuous check-
in actions have strong semantic correlation.

Based on the above analysis, we apply a novel structure
inspired by [2] that utilize two additional semantic gates to
control the influence of z; on the current recommendation
and c;_; on the latter recommendation. Specifically, we take
the semantic interval sequence that represents the irrelevancy
between connected check-ins as the extra input, and then
compared with the LSTM variant proposed before [9], which
implicitly leverages the additional sequence by influencing the
current input, our method leverage two additional semantic
gates to control the influence of not only the last check-in, but
also the cell state, finally we improve our model by coupled
input and forget gates. The mathematical expressions are listed
as follows:

Sl = o(x:Was, + 0(AstWs, ) + bs,) (10)

(1)
(12)

S2t = o(x:Wys, + 0(AsWs,) + bs,)
G=0—i-81,)-¢t14i-51,-C

Ct = (1—it)-ct,1 +ZtS2tC (13)

Oy = U(thzo + htflwho + bo) + AStVVso (14)

Fig. 5. Structure of semantic sequential correlation based LSTM
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hi = oy - tanh(¢&;) (15)

Where As € R is a vector with dimension d, repre-
senting the semantic impact factor. As; denote the vector
representations of semantic intervals between ;1 and z;. In
Eq.(10) and Eq.(11), S1; and 52, are two additional semantic
gates: S1; is utilized to control the short-term preferences by
modified the influence of the last check-in data on current POI
recommendation, and S2; is used to preserve semantic inter-
vals to capture users’ long-term preferences for subsequent
recommendation. Unlike the original LSTM directly using a
¢; to transfer information to the hidden state in Eq.(9), in
Eq.(12) we utilize a new cell state ¢; to store the modified C'
which is filtered by i; and S1;, then pass it to the hidden state
to affect the current recommendation. While the original c¢; is
leveraged to receive the S2; that stores the semantic intervals,
and then pass it to ¢;41, ¢i42...to save the long-term preference
of users.

Note that Wy, is less than 0 in Eq.(10), considering when
this model encounters a large semantic interval, S1; will be
relatively small, so in Eq.(12), the current input z; will be
filtered by a smaller S1,, then causing less influence on current
recommendation, and vice versa. However W, does not have
this limitation because S1; is only used to store semantic



intervals to model long-term preference. Inspired by [21],
we utilize 1 — 4, - S1; to replace the previous forget gate in
Eq.(12) due to S14’s filter function, and replace with 1 — 4, in
Eq.(13) due to S1;’s storage function.

The LSTM architecture is shown in Fig. 5, and the model
architecture is shown in Fig. 6. Note that we just utilize
a simple model architecture to test the performance of our
method. The parameters of model architecture are explained
as follows: the num_units represents the number of hidden
units, we set the number to 128 which most often used. The
input of the model is a concatenation of batch size check-
in id and semantic irrevelance As, seq_len is the length of
check-in sequence, we cycle seq_len times for each check-in
sesquence. The output of this model pass into a softmax layer
and the probability of each check-in id is captured after that.

D. Improvement Method

Different from [22] that alleviates the data sparsity problem
through discovering users’ trajectories’ hierarchical properties,
we directly mine users’ preference similarity to do that. Since
users’ check-in behaviors are usually affected by their own
preferences, that is, if users have similar preferences, their
mobility patterns will tend to be similar. So in this section, we
distinguish users’ behavior patterns by clustering, then each
cluster will transfer to a corresponding model we proposed
to avoid the low accuracy caused by putting all the check-ins
into a single model.

Owing to the rich semantic information, we still learn
users’ distinctive preferences in the semantic level, thus the
preferences of users are exploited in terms of their check-
in category distributions inspired by [19]. Specifically, from
getting the category information of each check-in location, we
let N* be the total number of check-ins of user v on category
c, then the preference of user u is defined as a distinctive
preference feature vector p_ﬁ, where p_ﬁ = (p{, py,....py), and
r is the total number of distinct categories. The vector’s item
py is defined as:

v NS 16
Pe ST NE (16)

After get all the preference vectors of users, the K -means
method is utilized to cluster preference vectors of all the users.
As the vector of each user indicates their unique preference so
the centroid of each cluster represents the typical features of
each group. When the users are clustered, the corresponding
model can better fit their mobility patterns. In Section IV, we
will discuss how the prediction performance of the next POI
recommendation is influenced by using users’ preferences.

IV. EXPERIMENTAL EVALUATION

In this section, we give an overview of the experimental
configuration, including dataset, evaluation criteria, baseline
methods, and experimental setting, then construct the experi-
ments to evaluate the performance of our proposed model.
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A. Dataset

Our experimental dataset includes long-term (about 9
months from January 2013 to September 2013) check-in
data collected from Foursquare, provided by [1]. It contains
33,278,683 check-ins by 22,401 users on 3,680,126 venues
(in 60 cities in the United States). Those 60 cities are the
most checked 60 cities by Foursquare users in the United
States, each of which contains at least 10K check-ins, thus it is
valuable and representative for the study of human mobility.
In the preprocessing stage, we remove users whose check-
in count is fewer than 10 and check-ins generated in non-
residential cities (We mark the city where each user check-
in most often as his/her residential city to make a more
accurate recommendation). After preprocessing, our dataset
contains 19,498 users with 1,172,753 check-ins. Fig. 8 shows
the cumulative distribution of users’ check-in times.

B. Evaluation Criteria

We use two kinds of criteria to evaluate our model and the
baselines. One is Recall@k which can be defined as:

Npi Qk

Ntest

RecallQk = (17)
where np;;@k is the number of test cases that include
groudtruth at top-k and nys stands for the number of total
test cases.

Another evaluation criteria is M RR (Mean Reciprocal
Rank), M RRQL is defined as the average of reciprocal
ranks of groudtruth in the recommendation list, and set the
reciprocal rank of groundtruth to O if the rank is above k.
Based on previous work [8], we set k to 10 if not specified
as a great value of k is usually ignored for a typical top-k
recommendation.

C. Baseline Methods

Our proposed method is a semantic sequential correlation
based LSTM framework for next POI recommendation, which
incorporates semantic interval sequences as the extra input.



TABLE I
PERFORMANCE IN TERMS OF RECALL@ 10 AND MRR@ 10 FOR ALL METHODS WITH VARYING EPOCH VALUES

Method Recall@10 MRR@10
epoch=20 epoch=40 epoch=60 epoch=80 epoch=20 epoch=40 epoch=60 epoch=80
BPR 0.2403 0.2917 0.3215 0.3390 0.1597 0.1947 0.2080 0.2105
LSTM 0.0256 0.6522 0.6211 0.7667 0.0060 0.4743 0.3653 0.5506
PLSTM-T 0.0311 0.5000 0.5533 0.6033 0.0131 0.1877 0.2484 0.2759
PLSTM-S 0.0211 0.5022 0.7278 0.8022 0.0063 0.2863 0.5420 0.6473
PLSTM-D 0.3022 0.4022 0.4444 0.4711 0.0883 0.1480 0.1775 0.2010
LSTM-S 0.3611 0.6256 0.8000 0.8767 0.1167 0.3479 0.5594 0.6886
and a forget gate.
cluster=3 o Phased LSTM [24] is a state-of-the-art LSTM architec-
081 cluster=5 ture for modeling event based on sequential data that adds
cluster=7 an additional time gate, in the following sections, we will
061 cluster=9 use PLSTM-T to represent it.
) e PLSTM-S. This is a variant of Phased LSTM that takes
3 our semantic interval sequences as the extra input.
~ 041 e PLSTM-D. This is a variant of Phased LSTM that takes
distance interval as the input of time gate.
0.2+ . .
D. Experimental Setting
We sort each user’s check-in records according to timestamp
0.0
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Fig. 8. Performance of Recall@10 with different cluster numbers in different
epoch number using our method
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Fig. 9. Performance of MRR@10 with different cluster numbers in different
epochs using our method

To prove the validity of the proposed model, we compare our
model with the following prediction methods:

o« BPR [23] This is the abbreviation of Bayesian Per-
sonalized Ranking, which is a learning algorithm for
collaborative filtering, frequently used in recommendation
with implicit feedback.

o LSTM [20] This is a general variant of RNN, which is
composed of a memory cell, an input gate, an output gate

order, and then taking the first 80% as the training set, the
remaining 20% for the test set. The learning rate of the
proposed model is initialized as 0.01 and the parameters in
our model are optimized by AdaGrad.

E. Performance Evaluation

Different & Performance. Firstly, we cluster the users into
k clusters based on their preference vectors and test k =
3,5,7,9. The performance is shown in Fig. 8 and Fig. 9. From
these figures, we can observe that: (1) Both the performance
of two evaluation criteria increase with epoch numbers. (2)
With the increasing of epoch numbers, the superiority of
k equals 5 appears continuously. Meanwhile, the prediction
performances are superior to other k values’ performances
on almost all the number of epoch when k = 5. (3) The
performance reaches the highest when k£ = 5 and epoch =
80, which shows the effectiveness of user clustering when k&
=5. (4) The performance decreases when further increase £ to
7 and 9.

So in the following experiment, we set the number of
clusters to 5.

Overall Performance. We report the comparison results
between our proposed model and other baselines, the overall
performances are shown in Table I. From the statistics, we can
conclude that:

o The performance of BPR increase steadily but no signifi-
cant increase, which shows the role of LSTM in sequence
recommendation of check-ins.

o The performance of the original LSTM shows great
volatility, in contrast, other methods increase steadily with
the epoch increasing, which shows the importance of
adding context information.




o Comparing with PLSTM-T incorporating temporal infor-
mation and PLSTM-D incorporating spatial information,
PLSTM-S achieves a better result when epoch number is
larger than 20, it proves the effectiveness of the idea of
combining semantic sequential correlation.

o Without considering the LSTM with strong fluctuation,
PLSTM-S and LSTM-S are superior to other methods
with a certain large margin which demonstrates the gener-
ality of incorporating the semantic sequential correlation.

e LSTM-S achieves much better prediction performance
than PLSTM-S in all evaluation criteria which shows
the validity of our LSTM structure with two additional
semantic gates to mitigate the data sparsity problem.
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Fig. 10. Performance comparison using Recall@k on our dataset with
varying the values of k in LSTM-S, LSTM-D, LSTM-T
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Fig. 11. Performance comparison using M RRQF on our dataset with varying
the values of k in LSTM-S, LSTM-D, LSTM-T

Different Factor Performance. We do experiments that
consider three different factors representing temporal context,
spatial context and semantic context separately. The exper-
imental results are presented in Fig. 10 and Fig. 11. From
these figures, we observe that: the performance will rise with
the increasing of k values, and semantic context (LSTM-S)

show great superiority than temporal context (LSTM-T) and
spatial context (LSTM-D) on all k values, which demonstrates
the importance of the semantic context.

V. CONCLUSION

This paper proposes a novel semantic sequential correla-
tion based LSTM model in terms of the semantic interval
sequences generated from semantic sequential correlation,
obtained by our semantic sequential correlation calculation
model. By introducing this semantic factor into the additional
semantic gates, the newly added semantic context alleviate the
data sparsity problem and boost the prediction performance of
the next POI recommendation. The experimental results prove
the effectiveness of our proposed method.
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