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ABSTRACT Adaptive steganography has become unprecedentedly prevalent compared with non-adaptive
ones due to its remarkable performance when resisting modern steganalysis. It prefers hiding bits into pixels
from texture regions as such modification is considerably difficult to detect. Current steganalysis capable
of locating steganographic payload has only been investigated in the non-adaptive domain, while the works
of locating hidden bits modified by adaptive steganographic algorithms have not been studied yet. In this
paper, we propose a novel algorithm to locate flipped pixels modified by adaptive steganography in the
spatial domain. By re-embedding randomly generated messages upon one single image, we observe that
adaptive steganographic methods are prone to modify pixels in the same region, namely texture region. Such
property straightforward inspires us to re-embed a random message at the same relative payload into the stego
image to obtain the modification map. Then, we extend the modification map with a given margin to locate
the modified pixels. The extensive experiments have verified the effectiveness of our designed algorithm in

locating flipped pixels modified by the adaptive steganography in the spatial domain.

INDEX TERMS Steganalysis, flipped bits localization, re-embedding random bits, modification map.

I. INTRODUCTION

Steganography is the science and art of concealing secret
information. In the field of image steganography, the secret
message is carried by an empirical cover under the super-
vision of the warden, and extracted by the recipient so as
to achieve covert communication. A common and practi-
cal way in image steganography is to modify cover pix-
els slightly by £1 on the consideration of guaranteeing
its undetectability. According to the embedding strategy,
steganographic methods nowadays can be divided into two
categories: non-adaptive and adaptive steganography.

A. STATE OF THE ART

LSB (Least Significant Bit) replacement is one of the
classical non-adaptive steganographic methods. It randomly
spreads the modification changes to the whole cover image.

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhitao Guan.

To improve the undetectability, LSB matching is then pro-
posed to avoid the asymmetry artifacts by randomly flipping
LSBs.

In modern steganography, however, it has been validated
that adaptive steganographic methods, mainly relying on
texture regions, achieve the optimal undetectability. One of
the most successful adaptive models rather treats the mes-
sage embedding as a source coding problem with a fidelity
constraint [1], instead of taking the cover source distribution
into account. In this scenario, the design of the distortion
function becomes essential especially for the sender who
embeds secret message into the cover image, relying on the
principle of minimizing the distortion caused by embedding.

In spatial domain, HUGO (Highly Undetectable steGO) [2]
allocated high cost to those pixels which caused the feature
vector more discriminative after embedding. In such manner,
the modification probably happens in texture regions or along
edges. HUGO BD was an improved version of HUGO that
was implemented using the Gibbs construction with bound
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distortion [3]. WOW (Wavelet Obtained Weights) [4] used
a bank of high-pass directional filters to avoid embedding
in predictable regions such as clean edges, leading to better
performance than HUGO when resisting modern steganalysis
with SRM (Spatial Rich Models) [5]. UNIWARD (UNIversal
WAUvelet Relative Distortion) [1] evolved from WOW, and
could be applied both in spatial domain (S-UNIWARD) and
transformed domain (J-UNIWARD). HILL (HIgh-pass, Low-
pass, and Low-pass) [6] averaged pixel values to re-assign
the low cost value of pixels (assigned with high cost by
prior distortion function) in texture areas, resulting in bet-
ter performance than that of other aforementioned algo-
rithms. Apart from J-UNIWARD, in JPEG domain, a new
steganographic framework with using the constructed ref-
erence image and minimizing the feature distortion was
proposed for JPEG images [7]. Besides, by considering the
robust performance of steganography suffering compression
or re-scaling attack, robust image steganography (see [8], [9]
for instance) is an emerging research field concerning on data
security [10], [11] that draws much attention.

Steganalysis aims to (i) detect the existence of hidden
information (see [12]-[14] for instance); (ii) extract the
secret information. Current arts (see [5], [15], [16]) classify
between cover and stego images via rich models using
ensemble learning. Based on decision rough set «a-positive
region reduction, [17] selected rich model features to reduce
the steganalysis feature dimension and improved its effi-
ciency. Besides, the algorithm proposed in [18] attempted to
search stego-key, and extract secret messages given that the
key space was relevantly small. To deal with the steganog-
rapher detection problem over large-scale social media
networks, [19] proposed a method with utilizing high-order
joint features and clustering ensembles. Locating hidden bits
lies above those objectives. Provided that the payload location
is correctly predicted, extracting hidden data would be feasi-
ble. In [20] and [21], payload of non-adaptive steganography
was successfully located. However, to our knowledge, few
studies focus on locating adaptive steganographic payload.

B. CONTRIBUTIONS OF THE PAPER

In this paper, we novelly propose fuzzy localization of flipped
bits via the designed modification map. Those bits are within
the suspicious regions modified by adaptive steganography.
The main contributions of this paper are as follows:

o We propose a new framework to locate the stegano-
graphic flipped bits in spatial domain via a modification
map, which can be applied in modern adaptive steganog-
raphy.

« In both two scenarios that the steganographic payload
is known or unknown, our proposed locating algorithm
performs very well.

o We employ F| measure to strike the balance between
recall rate and precision rate of fuzzy localization
which is capable of evaluating the security of stegonag-
raphy, involving both undetectability and localization
resistance.
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o Numerical experiments demonstrate the sharpness of
the empirically established results and the good perfor-
mance of our proposed locating algorithm. Furthermore,
cross validation experiments are conducted to verify the
effectiveness of our locating algorithm.

C. ORGANIZATIONS OF THE PAPER

The rest of our paper is organized as follows. Relevant
existing works are introduced in Section II. In Section III,
we expose the locations of suspicious regions modified
by adaptive steganography. Our algorithm, that can locate
flipped hidden bits, is specified in Section IV. Section V
validates our locating algorithm by extensive experiments.
This paper is concluded in Section VI.

Il. RELATED WORK

To our knowledge, morden steganalysis incorporating with
the knowledge of pixel embedding probability achieves
high detection performance (see [16], [22], [23]). In [22],
the embedding costs of pixels were sorted in ascending order,
resulting in that feature extraction only happened in tex-
ture regions (instead of the whole image). In such manner,
it achieved better detection performance for WOW steganog-
raphy. Meanwhile, authors of [23] proposed a variant of the
SRM that utilized the pixel embedding change probability.
This approach, known as Selection Channel Aware (SCA)
steganalysis, increased the detection accuracy in compari-
son with the original SRM. Next, based on the embedding
probability, the universal and unified adaptive steganalytic
framework was proposed in [16].

The core principle of adaptive steganalytic schemes afore-
mentioned is to take the embedding cost or embedding
probability into consideration in the feature extraction step.
If a pixel is flipped by adaptive steganography, it owns low
embedding cost and high embedding probability, and vice
versa. With such a property, our proposed steganographic
localization algorithm could be incorporated with modern
steganalysis because those to-be-localized pixels probably
exist in the texture region that have high embedding prob-
ability, and hence further increases detection performance.
Moreover, in an ideal scenario, the acquired location infor-
mation probably helps us extract hidden message. Last but
not least, we could also modify only a small portion of the
pixels within the located regions slightly by =£1 while visually
retains the image quality, in order to interfere/misguide the
secret communication between two adversarial parties.

In previous steganalysis aiming at detecting non-adaptive
steganography, authors of [20] located steganographic pay-
load embedded by LSB replacement via WS (Weighted
Stego-image) residuals. Relying on WAM (Wavelet Absolute
Moments) features [24], authors of [21] located the payload
embedded by LSB matching. But, current algorithms that
perform very well on locating non-adaptive steganographic
payload are invalid in adaptive domain. Because a large
number of stego images modified in the same pixels are
required, which is an unrealistic assumption in the practical
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FIGURE 1. lllustration of a cover image from BOSSbase, our embedding modification map, embedding probability map of [16]. Note that two maps are
acquired using S-UNIWARD steganography at 0.30 bpp. (a) Cover image. (b) Embedding modification map. (c) Embedding probability map.

detection. To our knowledge, few studies focus on locating
adaptive steganographic payload. In this paper, we propose a
novel algorithm to locate flipped pixels modified by adaptive
steganography. Note that our locating algorithm works very
well using only one single stego image.

Through multi-embedding operation, the prior work [16]
has verified the effectiveness of assigning the embedding
probability to each pixel when steganalyzing. Different from
that, we locate the flipped pixels of adaptive steganography
by once re-embedding. For instance, secret messages are
embedded by S-UNIWARD steganography at 0.30 bpp. Fig. 1
compares the experimental results. We can observe that
nearly all the pixels modified by re-embedding (pixels within
the bright regions in Fig. 1(b)) have relatively large embed-
ding probabilities in Fig. 1(c), meaning that they are more
likely to be embedded. Therefore, in our designed algo-
rithm, it is proposed to locate the modified pixels of adap-
tive steganography simply by once re-embedding rather than
multi-embedding. Besides, compared to once re-embedding,
multi-embedding is more time-consuming (e.g., time cost
of multi-embedding to obtain the embedding probability
as Fig. 1(c) is 40 times of obtaining Fig. 1(b)). Previ-
ous works successfully predict embedding probability by
multi-embedding and hence achieve high steganalysis per-
formance. In Section V, solid experiments verify that our
proposed locating algorithm also works very well.

Ill. LOCATION OF SUSPICIOUS REGION

In this section, we expose the locations of suspicious region
modified by adaptive steganography perceptually and empir-
ically. By re-embedding the same, flipped, and random bits,
we specifically analyze the modification of an inquiry image
caused by adaptive steganography, resulting into the design
of our locating algorithm.

A. RE-EMBEDDING SAME BITS
Adaptive steganography inherently prefers slightly modify-
ing pixels within texture regions, meaning that the content
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distribution of the cover image is preserved. While we inves-
tigate if the modification regions of two embeddings upon
one single image are partly overlapped since the cost matrix
of the cover remains almost unchanged. First, we generate
a random bit stream at relative payload 0.1 bpp, which is
embedded into a grey-level cover image Z = ({z;j},i €
{1,...,1},je{l,...,J}. Subsequently, it is proposed to use
the same message to generate a new stego image S’ = {s; j} by
modifying the original stego image S = {s;, j}l acquired from
Z. Note that we use one of often-adopted distortion functions,
S-UNIWARD, and both embedding operations are with the
help of STCs (Syndrome-Trellis Codes). Immediately, let us
define the modification map by:

255, if the pixel at (i, j) is modified

Muan(i, j) =
map (- /) 0, otherwise

ey

where the modification map M,y has the same dimension
as the cover or stego image. For clarity, Fig. 2 illustrates a
512 x 512 8-bit gray-scale cover image, and two modification
maps from its corresponding stego images. Muap1 pointing
out the flipped pixels caused by embedding, is obtained from
both Z and S while M, 2 is acquired from both S and S
We observe that two embedding operations both prefer select-
ing pixels almost in the same region, referring to the texture
region. Besides, few pixels are both set as 255 in the same
position of two modification maps, meaning that those pixels
have been flipped twice.

We assume that adaptive steganographic methods
might not modify the same pixel at twice while probably
its neighboring pixels. In this case, it is proposed to define
our proposed steganalysis algorithm as fuzzy localization.

In this context, regardless of hidden bits (the same, flipped or random
ones), the first stego image generated from the cover Z is denoted as S while
the second stego image from S denoted as S'.
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FIGURE 2. lllustration of a cover image and two modification maps from its corresponding stego images using S-UNIWARD at
0.1 bpp.
(@ (b) (@

FIGURE 3. lllustration of adjacent regions of a pixel in several different margin values, and the modification map Mﬁmp with margin value K = 3.

(@) K =0.(b) K =1.(c) K = 2. (d) K = 3. (€) MS5p-

Inspired by the results of Fig. 2, we extend the M, by
considering each pixel’s neighbors, which can be formulated
by:

M} i+ 4.7+ @)

_ 255, if the pixel at (i, j) is modified @)
n 0, otherwise

where g € [—K, K] represents an integer set controlled by the
margin value K. Next, the adjacent regions of a pixel in sev-
eral different margin values are illustrated in Fig. 3(a)~(d).
Fig. 3(e) illustrates M, ,, with margin value K = 3, where
the bright regions (the pixels are set as 255) definitely cover
a large portion of pixels modified by the first embedding
while we cannot guarantee that the bright regions perfectly
exclude unmodified pixels. When the margin value equals
to K, the dimension of the corresponding adjacent region is
formulated as (2K + 1) x (2K + 1). Obviously, in the case of
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K = 0, the modification map M, is reduced back t0 Mmgp.
Furthermore, one can define p as:
m
p=— 3
n

where 7 is the number of pixels that are modified when first
embedding (those pixels are set as 255 in Myy,p 1), and m
denotes the number of pixels that are both modified when
embedding and re-embedding (those pixels are set as 255 both
in M 1 and in Mp,p 2). p denotes the proportion of
the number of pixels modified by the first embedding and
correctly predicted by re-embedding.

We conduct our experiments over 10000 8-bit images
from the BOSSbase 1.01 [25]. The experimental results
in different margin values are listed in Table 1. One
can observe that at a fixed payload, the proportion p
can be increased as the margin value K becomes larger.
Because the larger adjacent regions can cover more pixels
used for information hiding. Besides, in a fixed margin value
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TABLE 1. Statistics on p within the margin value K when re-embedding same bits.

Payload o K
0 1 2 3 4 5 6 7 8 9o [ 10
0.05 bpp 0.0645 | 0.3441 | 0.5587 | 0.6884 | 0.7701 | 0.8239 | 0.8609 | 0.8872 | 0.9063 | 0.9205 | 0.9310
0.10 bpp 0.0863 | 0.4340 | 0.6655 | 0.7906 | 0.8621 | 0.9050 | 0.9318 | 0.9488 | 0.9597 | 0.9669 | 0.9717
0.20 bpp 0.1170 | 0.5447 | 0.7799 | 0.8875 | 0.9391 | 0.9645 | 0.9771 | 0.9836 | 0.9870 | 0.9890 | 0.9902
0.30 bpp 0.1427 | 0.6243 | 0.8498 | 0.9364 | 0.9701 | 0.9835 | 0.9890 | 0.9916 | 0.9929 | 0.9936 | 0.9941
0.40 bpp 0.1659 | 0.6877 | 0.8972 | 0.9634 | 0.9841 | 0.9910 | 0.9936 | 0.9948 | 0.9954 | 0.9958 | 0.9960
0.50 bpp 0.1890 | 0.7431 | 0.9314 | 0.9791 | 0.9912 | 0.9947 | 0.9961 | 0.9967 | 0.9970 | 0.9972 | 0.9973
TABLE 2. Statistics on p within the margin value K when re-embedding flipped bits.
Payload o K
0 1 2 3 4 5 6 7 8 9o [ 10
0.05 bpp 0.0667 | 0.3557 | 0.5775 | 0.7116 | 0.7960 | 0.8516 | 0.8897 | 0.9168 | 0.9365 | 0.9510 | 0.9619
0.10 bpp 0.0879 | 0.4419 | 0.6771 | 0.8040 | 0.8766 | 0.9200 | 0.9471 | 0.9643 | 0.9755 | 0.9827 | 0.9876
0.20 bpp 0.1180 | 0.5487 | 0.7856 | 0.8937 | 0.9457 | 0.9711 | 0.9839 | 0.9904 | 0.9939 | 0.9959 | 0.9971
0.30 bpp 0.1433 | 0.6272 | 0.8538 | 0.9409 | 0.9748 | 0.9882 | 0.9938 | 0.9964 | 0.9977 | 0.9984 | 0.9989
0.40 bpp 0.1666 | 0.6903 | 0.9003 | 0.9668 | 0.9876 | 0.9945 | 0.9971 | 0.9983 | 0.9989 | 0.9993 | 0.9995
0.50 bpp 0.1895 | 0.7450 | 0.9337 | 0.9816 | 0.9937 | 0.9972 | 0.9986 | 0.9992 | 0.9995 | 0.9997 | 0.9998
TABLE 3. Statistics on p within the margin value K when re-embedding random bits.
Payload « K
0 1 2 3 4 5 6 7 8 9o [ 10
0.05 bpp 0.0666 | 0.3555 | 0.5772 | 0.7113 | 0.7958 | 0.8514 | 0.8895 | 0.9166 | 0.9363 | 0.9510 | 0.9619
0.10 bpp 0.0879 | 0.4421 | 0.6773 | 0.8041 | 0.8766 | 0.9201 | 0.9471 | 0.9644 | 0.9755 | 0.9827 | 0.9876
0.20 bpp 0.1179 | 0.5487 | 0.7855 | 0.8937 | 0.9457 | 0.9712 | 0.9839 | 0.9904 | 0.9939 | 0.9959 | 0.9971
0.30 bpp 0.1434 | 0.6273 | 0.8539 | 0.9409 | 0.9748 | 0.9882 | 0.9938 | 0.9964 | 0.9977 | 0.9984 | 0.9989
0.40 bpp 0.1665 | 0.6901 | 0.9003 | 0.9668 | 0.9876 | 0.9945 | 0.9971 | 0.9983 | 0.9989 | 0.9993 | 0.9995
0.50 bpp 0.1895 | 0.7450 | 0.9338 | 0.9816 | 0.9937 | 0.9972 | 0.9986 | 0.9992 | 0.9995 | 0.9997 | 0.9998

K, the more the bits embedded into, the larger proportion the
modified pixels can be located.

As Table 1 reports, p nearly remains stable with the large K
and payload. We assume that the cost value of the pixels mod-
ified by the first embedding are slightly changed (see [16]
for details). Because those pixels are merely modified by £1.
When we re-embed the same bits into the stego image S, some
pixels carrying the payload might not be flipped again.

B. RE-EMBEDDING FLIPPED BITS

To locate the pixels modified in the cover image Z, we intend
to flip the original bits (for the first embedding) when re-
embedding. The results are illustrated in Table 2.

As Table 2 illustrates, one can observe that with increas-
ing K, the proportion p is gradually enhanced at the given
payload. Also, for a given K, the proportion p increases
when increasing payload. For instance, when the payload is
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0.05 bpp and K equals to 0, few modified pixels (6.67%)
are located by re-embedding. However, when the payload
increases to 0.50 bpp and K equals to 10, almost all modified
pixels (99.98%) are correctly located.

Compared to the results in Table 1, one can locate more
modified pixels. Because small portions of pixels modified
in the first embedding cannot flip when re-embedding the
same bits. By artificially flipping the bits, we locate those
pixels carrying the payload without being flipped for the first
embedding.

C. RE-EMBEDDING RANDOM BITS

However, due to the unpredictability of the message embed-
ded by the sender in a covert communication, we can neither
predict the hidden bits when steganalyzing nor the flipped
ones. Thus, for a practical case, let us generate a random
bit stream instead when re-embedding. The results are shown
in Table 3.
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From Table 3, it is observed that with increasing K,
the proportion p is also gradually enhanced. Although we
replace the flipped bits with the random ones, the locat-
ing performance is marginally degraded, nearly as well as
results with the flipped bits. The difference of p is less
than 0.03% in each corresponding position from the results
between Table 2 and Table 3. Therefore, our assumption is
empirically verified, that one can re-embed a random bit
stream in place of unknown hidden bits to realize the fuzzy
localization.

Despite the fact that adaptive steganography achieves
a high level of undetectability when resisting steganaly-
sis, it does have an inherent limitation. That is, adaptive
steganography is prone to modify the pixels within tex-
ture regions, preserving the content distribution of the cover
image. When re-embedding happens, it probably modifies
the same regions upon an image. If we take a stego image
as cover, and artificially embed the same or even random
messages into an image, majority of pixels or their neigh-
bors might be modified twice. Such limitation can be uti-
lized to locate the modification region caused by adaptive
steganography.

IV. OUR PROPOSED LOCATING ALGORITHM

In this section, we provide a specific description of our
designed algorithm that attempts to locate the region in which
the pixels are modified by adaptive steganographic methods
in spatial domain. Inspired by the assumption proposed in
Section III, a re-embedding operation applied into the stego
image S is introduced.

Our proposed locating algorithm is designed both for
the following two scenarios. In the first scenario where
the steganographic payload is known, modified pixels are
located simply using the acquired payload. More practically,
in another scenario where the payload is unknown, we con-
duct the localization relying on quantitative steganalysis, that
is capable of completing payload estimation [26]. In Fig. 7,
we have compared the performance from two scenarios,
where we can observe that regardless of knowing payload or
estimating payload, our proposed locating algorithm always
performs very well.

The description of our locating algorithm can be summa-
rized as follows:

o Step #1: Generating a random bit stream. A random
bit stream m with the length L is generated. Note that
L = N x a where N denotes the total amount of pixels,
and « is the relative payload.

o Step #2: Calculating a cost matrix. Relying on an
adaptive steganographic algorithm, a bank of designed
filters are then utilized to obtain the cost matrix of the
stego image. For simplicity and clarity, let us denote the
stego image as S, and the cost matrix as p.

o Step #3: Embedding a message using STCs. Without
loss of generality, STCs is used to embed message m
into the stego S on the principle of minimizing the
distortion function based on the cost matrix p. In such
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manner, the stego version of image S after modification
is denoted as §'.

« Step #4: Obtaining a modification map. On the pur-
pose of locating modified pixels, the modification map
Mingp is obtained as described in Section IIL

o Step #5: Extending the modification map. To com-
plete fuzzy localization of modified bits, we design
the extended modification map M,‘;mp in a given mar-
gin value K to locate the modified pixels as more as
possible.

Note that the value K would increase if we intend to locate
the modified pixels as more as possible. While as the margin
value K becomes larger, more and more innocent pixels
(without being modified) would be also involved. Thus, it is
proposed to design a reasonable metric to acquire the opti-
mal K. Immediately, let us respectively define the precision
rate P by:

S
P = —-— 4
N1 @)
and recall rate R by:
S
R=— 5
N> )

where S denotes the number of pixels that are modified twice,
valuing 255 both in Mmap 1 and M, 2. Ny represents the
number of pixels that are modified by embedding, valuing
255 in Mp,p 1, and N; counts the number of pixels that
are modified by re-embedding, valuing 255 in anap 2. Note
that if K become large, the recall rate R would increase,
leading to that the adjacent regions cover more flipped pix-
els. Meanwhile, more innocent pixels being contained in the
adjacent regions results into the decreased P, and vice versa.
To leverage the tradeoff between R and P, let us formulate Fg
by:

1+ B xPxR

PT B x P +R

where we set 8 as 1, because we allocate the same weights to

P and R as they both are important in our designed method.
Thus, Fg reduces to F7:

(6)

2xPxR
Fil=——— @)

P+R

V. EXPERIMENTS

The main contribution of this paper is to realize fuzzy local-
ization of flipped bits by using our proposed modification
map. Note that when the hidden bits have been embedded
merely via adaptive steganography, our proposed algorithm
can perform effectively. In this section, we mainly introduce
our experiment setups, and demonstrate the relevant results of
the well-performed detector when dealing with the problem
of locating flipped bits modified by modern adaptive stegano-
graphic methods. Note that we conduct the fuzzy localiza-
tion experiments under two scenarios, involving known and
unknown payload. Besides, it is proposed to determine the
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FIGURE 4. Recall rate in different margin values at various payloads. (a) Recall rate of HUGO. (b) Recall rate of WOW. (c) Recall rate

of S-UNIWARD. (d) Recall rate of HILL.

parameter K, and implement the cross validation, where four
modern steganographic schemes are introduced to investigate
the effectiveness of our proposed locating algorithm.

A. EXPERIMENT SETUPS

We conduct our experiments on the benchmark BOSSbase
ver.1.01 [25], which contains 10000 8-bit gray-scale images.
All images are acquired from eight different digital still cam-
eras in the size of 512 x 512 pixels. Table 4 reports the
experimental environment and statistic.

B. FUZZY LOCALIZATION WITH KNOWING PAYLOAD
In our experiments, four modern adaptive steganographic
methods: HUGO BD, WOW, S-UNIWARD, and HILL, are
investigated. It is proposed to adopt different cost matrices
from HUGO BD, WOW, S-UNIWARD, and HILL. In each
group, six random bit streams at different payloads from
0.05 bpp to 0.5 bpp are generated, and embedded using STCs.
The experimental results are illustrated in Fig. 4.

At the beginning, the recall rate R for four algorithms
remarkably increases, and then is slightly improved with
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TABLE 4. Experimental environment and statistic.

Image source BOSSbase 1.01 dataset

Image color Grey-level
Image size 512 x 512
Image format PGM

Number of original images | 10000

Payload 0.05 ~ 0.5 bpp

Steganographic schemes HUGO BD, WOW, S-UNIWARD, HILL
Our proposed algorithm
4 x Intel Xeon E7-4820 2.0GHz CPUs

16G

Locating method
CPUs
RAM

increasing K, for all the six payloads from 0.05 bpp to
0.50 bpp. When K equals to 4, all recall rates are larger
than 80%. Furthermore, R nearly approaches to 100% when
K equals to 9, meaning that almost all modified pixels are
successfully located. Dealing with each steganographic algo-
rithm in a fixed K, the larger the payload, the more pixels
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FIGURE 5. F; value in different margin values at various payloads. (a) F; value of HUGO. (b) F; value of WOW. (c) F; value of

S-UNIWARD. (d) F; value of HILL.

modified can be located. Thus, the results empirically verify
that our algorithm performs effectively in locating stegano-
graphic bits modified by prior arts.

C. DETERMINING PARAMETER K

Since K has a great impact on our algorithm, let us discuss the
selection of it. As K becomes larger, more flipped pixels can
be located. Meanwhile, more innocent pixels are also incor-
rectly identified, saying that the precision rate P degrades.
To leverage between R and P, it is reasonable that F is
introduced. Fig. 5 reports the results of F for four adaptive
steganographic methods.

We can observe that as the K becomes larger, the F
value increases at first and then gradually decreases. Based
on the empirical results, let us set an optimal K as 1 for
prior arts at each payload, leading to 3 x 3 adjacent region.
Besides, It can be observed that HILL is more easier to
be located than S-UNIWARD. Because HILL adopts two
low-pass filters to make the low cost values (correspond-
ing to the texture regions) more clustered, leading to that
the modifications caused by HILL are prone to the texture
region compared to that of S-UNIWARD. In this case, our
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texture-region-sensitive algorithm is more easy to localize
modification caused by HILL.

To our knowledge, when evaluating the security of stego-
nagraphy, most of prior literature only focus on undetectabil-
ity, using some metrics such as E,,, or Pg. However, few
literature focus on the security of localization resistance,
namely when a stego image is successfully detected, whether
or not the hidden bits of the stego image can be further-
more accurately located. Then let us re-define the security
of stegonagraphy, involving both undetectability and local-
ization resistance. Therefore, although HILL is slightly more
undetectable than S-UNIWARD, it hardly holds true that
HILL performs better than S-UNIWARD since S-UNIWARD
is more difficult to locate.

D. FUZZY LOCALIZATION WITHOUT KNOWING PAYLOAD

In subsection V-B, we conduct fuzzy localization of four
modern adaptive steganographic schemes under the assump-
tion that the steganographic payload has been acquired. In a
more practical case, we intend to locate flipped bits pro-
vided that the steganographic payload is unknown. In this
subsection, we locate modified pixels of adaptive steganog-
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and true payload.

raphy relying on the estimated payload so as to verify that
our locating algorithm still works well with the estimated
payload.

In this experiment, we first embed random bits into the
cover images at 0.30 bpp according to the rule of HUGO.
Then, quantitative steganalysis in [26] is used for providing
an estimated payload of the stego images. Fig. 6 reports
the estimated payloads of 100 images randomly selected
from BOSSbase in comparison with its corresponding true
version. We can observe that the subtle differences (less
than 0.04 bpp) exist between the estimated payload and
the true one. The results of Fig. 6 indirectly verify that
locating steganographic bits via the estimated payload is
feasible.

Next, let us adopt our proposed algorithm to locate the
modified pixels with the estimated payload. For compari-
son, locating modified pixels by the true payload 0.3 bpp is
also conducted. The F; values of 100 images are illustrated
in Fig. 7. As Fig. 7 reports, each F| value via the estimated
payload are nearly overlapped with that via the true payload.
The difference between two F| values attributes to the minor
detection error between the estimated payload and the true
payload. However, such a minor detection error is acceptable
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in our proposed locating algorithm. Nevertheless, in the prac-
tical scenario that the steganographic payload is unknown,
the experimental results directly verify that one can locate
steganographic flipped pixels with the payload estimated by
quantitative steganalysis.

Furthermore, let us redo the experiment using a large scale
set, namely 1000 images randomly selected from BOSSbase.
Fig. 8 shows the difference histogram between the F values
obtained respectively via estimated payload and true payload.
It can be observed that the differences are quite small. All
values are within the range from -0.025 to 0.025 and more
than 84.2% of the values lay in the range from -0.01 to 0.01.
Fig. 8 solidly verifies that regardless of acquiring the stegano-
graphic payload, our proposed locating algorithm always
works very well.

E. CROSS VALIDATION OF DIFFERENT STEGANOGRAPHIC
METHODS

In the aforementioned experiments, our locating algorithm
works under two assumptions: (i) the steganographic pay-
load is acquired; (i) the steganographic scheme is correctly
detected. In subsection V-D, we have verified that the locating
algorithm works well with the estimated payload. In this sub-
section, let us assume the steganographic scheme is unknown.
Then we intend to conduct the cross validation experiments
over different steganographic algorithms.

For the purpose of realizing cross validation, each of the
four steganographic algorithms (i.e., HUGO BD, WOW,
S-UNIWARD and HILL) is adopted respectively to hide
secret random message into the cover image. Next, those
hidden bits are located by using our proposed algorithm,
assuming all four steganographic algorithms. We take BOSS-
base as our benchmark and embed secret bits into 10000 cover
images at 0.30 bpp. The experimental results are reported
in Table 5.

We can observe that the underlined F; values in bold-
face along the diagonal direction are larger than others in
the table. In each row, assuming the same steganographic
method, our proposed algorithm for locating modified pixels
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TABLE 5. F; value of cross validation by different steganographic schemes.

. . Our locating algorithm assuming steganographic scheme
Steganographic scheme for embedding
HUGO BD | WOW | S-UNIWARD HILL
HUGO BD 0.2989 0.2771 0.2380 0.2462
WOwW 0.2716 0.3076 0.2532 0.2728
S-UNIWARD 0.2030 0.2192 0.1917 0.2002
HILL 0.2362 0.2651 0.2246 0.2770

can obtain the largest F; value, while by assuming other
three steganographic schemes the proposed algorithm has
a minor performance decrease. The greatest decrease rate
is 20.37%.> Because our locating algorithm assuming the
same steganographic scheme for embedding is more likely
to reproduce the modification of embedding as they share
the same embedding distortion function. Furthermore, other
three adaptive steganographic schemes can also predict large
portion of the modification as they are all prone to embed in
texture regions. Experiment results empirically verify that the
most accurate way to locate modified pixels is to assume the
correct steganographic scheme. Even if the steganographic
scheme is unknown, one can also locate flipped pixels using
the other three adaptive steganographic methods to obtain the
sub-optimal result.

Surprisingly, it’s better to assume WOW than S-UNIWARD
when locating flipped bitts embedded by S-UNIWARD. This
attributes to the overly adaptivity of WOW compared with
S-UNIWARD. WOW might concentrate more modifica-
tion on the regions that are difficult to model, leading to
that our proposed locating algorithm with assuming WOW
also focuses more on texture regions where the payload of
S-UNIWARD is exactly embedded.

VI. CONCLUSION
In this paper, exploiting the modification regions caused by
adaptive steganographic method, a steganalytic algorithm is
proposed to implement fuzzy localization of modified pix-
els. Through re-embedding a random message, we design
a modification map that is capable of locating hidden bits
caused by adaptive steganography in spatial domain. Exten-
sive experiments verifies that when the payload is known or
unknown, our locating algorithm performs very well. Further-
more, the experiment of cross validation directly verifies the
effectiveness of our algorithm in the practical localization.
Our proposed locating algorithm performs well on locating
adaptive steganographic payload while it fails in non-adaptive
cases (for instance, LSB replacement and LSB matching).
Because non-adaptive steganography spreads the modifica-
tion to the whole cover image randomly and is not prone
to modify the same regions in re-embedding. Besides, it is
worth noting our locating algorithm works well on the basic

2The rate (0.2989-0.2380)/0.2989 ~ 20.37%, in the case of HUGO BD for
embedding and S-UNIWARD for assuming.
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prerequisite that an inquiry image has been classified as a
stego one. However, that would not be a limitation since
current steganalysis (see [5], [15], [26] for instance) is suffi-
ciently powerful to determine a stego image. In this scenario,
we has verified the effectiveness of the proposed algorithm
(see details in the experiment of V-D).

In fact, although the fuzzy localization is successfully
realized, the stego key is still unavailable, leading to the
failure of restoring the secret hidden message. However,
it is possible that a latent malicious attacker slightly mod-
ifies the stego image by dithering a small portion of local-
ized modified pixels, resulting in that the misguided secret
information is transmitted. In our future work, we intend
to take the pixel embedding probability into consideration
as to narrow down the suspicious regions and improve
the detection accuracy. Moreover, it can be promising to
straightforward extend our proposed algorithm into JPEG
domain to locate the DCT coefficients modified by adaptive
steganography.
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