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Abstract. Recently, Collective Spatial Keyword Querying (CoSKQ),
which returns a group of objects that cover a set of given keywords
collectively and have the smallest cost, has received extensive attention
in spatial database community. However, no research so far focuses on
a situation when the result of CoSKQ is taken as the input of a query.
But this kind of query has many applications in location based services.
In this paper, we introduce a new problem Reverse Collective Spatial
Keyword Querying (RCoSKQ) that returns a region, in which the query
objects are qualified objects with the highest spatial and textual similar-
ity. We propose an efficient method which uses IR-tree to retrieve objects
with text descriptions. To accelerate the query process, a pruning method
that effectively reduces computing is proposed. The experiments over real
and synthesis data sets demonstrate the efficiency of our approaches.

Keywords: Collective Spatial Keyword Querying · A set of query ob-
jects · Reverse

1 Introduction

Given a set of spatial-textual objects, a query object with a location and a set
of keywords, Collective Spatial Keyword Querying (CoSKQ) is to find a set
of objects such that it covers given keywords collectively and has the smallest
cost. An example application is to find several places that can collaboratively
provide drinking, singing and accommodation to a tourist. In previous works
[1, 8], the authors devised both exact and approximate solutions according to
different spatial similarities. Then in [7], the authors studied CoSKQ on road
network. However, these researches only finish the computation from the user’s
perspective. In this paper, we introduce a new problem Reverse Collective Spatial
Keyword Querying (RCoSKQ) to find a region (e.g., influence zone), in which
the total distance between query objects and a user is minimum, and the query
keywords set of the user is a subset of all the keywords of query objects.

Reverse k Nearest Neighbor (RkNN) query has been extensively studied in
spatial database community. Given a set of spatial objects O and a query object,
a RkNN returns objects in O which take query object as one of k nearest neigh-
bors. In [2, 10, 11, 13], only spatial similarity is considered. Then Reverse Spatial
Textual k Nearest Neighbors (RSTkNN) query with both spatial similarity and
textual relevance is proposed in [9, 5, 3, 6, 12]. However, different with RCoSKQ,
only one query object is considered in these researches.
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Imagine a case that the government wants to build a residential area in a
business district, which includes three facilities, a cinema, a ktv and a Coffee
House. In this case, if any user in this region intends to watch movies, sing a
song and have coffee, these three facilities cover all the three activities collec-
tively and minimize the accumulated distance to the user. In this example the
result is a region in which query objects have the highest influence under com-
binations of their services. Such a combination consists of text descriptions of
query objects. And both spatial proximity and textual similarity are considered
in this situation. To the best of our knowledge, we are the first to explore this
type of query in which a set of query objects are given in the spatial-textual
database domain.

But we face two challenges in this study. The first challenge is how to identify
all the keywords sets of query objects which collectively contained by them. The
second is how to compute efficiently the influence region of the query objects.

To address these two challenges, we use an IR-tree to retrieve spatial-textual
objects. The procedure is divided into two phases. The first phase is to find
all the subsets of keywords. An incremental algorithm is presented to improve
efficiency, in which query objects are visited one after another. For each existing
subset during iteration, it is combined with the keywords of current visited
object, and invalid subsets are deleted at the same time. Then in the second
phase we use Half-space pruning technology to compute the influence region.
Different with studies in [2, 12], the input of RCoSKQ is a set of query objects.
We develop an efficient spatial pruning method which utilizes both spatial and
textual information of the objects.

Our contributions can be summarized as follows: (1)We propose a new query
problem, Reverse Collective Spatial Keyword Querying RCoSKQ, and formalize
it in the same way with CoSKQ. (2)We propose an efficient method based on
Half-space pruning technology. Both textual similarity and spatial proximity are
taken into consideration and the region is returned after examing each combina-
tion of keywords. An efficient and effective spatial pruning algorithm is proposed
which can reduce redundant calculation of generating result region. (3)Extensive
experiments are conducted on both real and synthesis data sets to evaluate the
efficiency of the proposed algorithm.

The rest of this paper is organized as follows. Section 2 defines some basic
concepts. Section 3 and 4 illustrate our proposed approaches. Section 5 conducts
the evaluation on different data sets and analyze of our experimental results.
Finally we make a conclusion in Section 6.

2 Preliminaries

Assume all objects are located in Euclidean space. Let O be a spatial data set
consists of m spatial web objects, each object o ∈ O is associated with a tuple
(o.λ,o.ψ), where o.λ is a location and o.ψ is a set of meaningful keywords that
describe the object (e.g., the specialties of a restaurant or the sceneries of a
scenic spot).
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Definition 1. Collective Spatial Keyword Query(CoSKQ) [1]: Given a
query q = (q.λ, q.ψ), the Collective Spatial Keyword Querying(CoSKQ) problem
is to find a set S of objects in O such that S covers q.ψ and the cost of S is
minimized.

In this paper, we consider the sum cost which is also adopted in [1]. That is,

Cost(q, S) =

N∑
k=1

dist(ok, q) (1)

where N is the number of objects in S, dist(o,q) is the Euclidean distance between
q and ok.

Definition 2. Collective Keyword Set (CKS): Given a set of query objects
Q = {q1, q2, ..., qn}, let Ψ be the set of keywords contained by all the objects in Q
(e.g., Ψ =

∪
qi.ψ), Collective Keyword Set is a subset of Ψ contains |Q| different

keywords, each keyword is covered by an object of Q, respectively.

Since that in CoSKQ the query’s keywords are collectively contained by a
group of spatial web objects, we define that each query object covers one keyword
and each CKS consists of |Q| keywords. For example, there are two query points
q1 and q2, q1.ψ = {a,b}, q2.ψ = {c}. The CKSs are {a,c} and {b,c}, respectively.

Definition 3. Collective Influence Region (CIR): Given a set of query
objects Q = {q1, q2, ..., qn}, CKS is a Collective Keyword Set of Q, Collective
Influence Region is a region if any user in which takes CKS as query keywords
set, Q will be the result of CoSKQ (Q) which contains |Q| objects.

Definition 4. Reverse Collective Spatial Keyword Querying(RCoSKQ):
Given a set of query objects Q, CKSQ = {CKS1, CKS2, ..., CKSk} contains all
the CKSs of Q. CIRQ = {CIR1, CIR2, ..., CIRk} represents the corresponding
CIRs. RCoSKQ returns a region R which is the union of all the CIRs (e.g.,
R =

∪
CIRi).

3 Collective Influence Region Based Algorithm

To the best of our knowledge, none of existing methods can be directly used
for RCoSKQ. Most of the existing researches about RkNN and RSTkNN focus
only on the situation of a single query object. Some existing researches like
Range Based Query and Skyline Query need one point in the result of RCoSKQ
as query object, however, the result of RCoSKQ is a region and can not be
known in advance. In this section, We propose Collective Influence Region Based
Algorithm (CIRB) based on algorithm InfZone [2]. CIRB has two phases. In the
first phase, all the CKSs of a set of query objects are enumerated. In the second
phase, the CIR for each CKS is computed and all the CIRs are combined finally.
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3.1 Index Structure

We use IR-tree to retrieve spatial-textual objects. The IR-tree [4] is an R-tree
where each node has a reference to an inverted file. Entries of each leaf node are
represented in the form (e.mbr,e.inv), where e refers to an object o ∈ O, mbr is
the bounding rectangle of a node, and e.inv refers to the inverted file of a node.
An inverted file contains a vocabulary of all distinct words and a posting list for
each word t which means the objects contain the word t. For each non-leaf node,
e refers to a child node, mbr is the minimum bounding rectangle of all entries
of that child node and e.inv is the corresponding inverted file which is the union
of all the keywords of child nodes.

3.2 The Collective Keyword Set

Table 1: Optimized enumeration processing

Step Action Candidate Set
1 initialization {}
2 insert p1 {t1},{t5}
3 insert p2 {t1, t2},{t1, t4},{t5, t2},{t5, t4}
4 insert p3 {t1, t2, t4},{t5, t2, t4},{t1, t2, t6},{t1, t4, t6},{t5, t2, t6},{t5, t4, t6}

A straightforward method to acquire all the CKSs is to enumerate all pos-
sible combinations of keywords of query objects Q and then filter out those are
not CKS. This method is time consuming and might yield an exponential time
complexity in terms of the number of keywords of Q. In order to solve this prob-
lem, we propose an incremental enumeration method. In each of the subsequent
iterations, for each existing subset, it is combined with the current visited object
to generate a new subset. At the same time, the invalid subsets are removed.
For example, assume that p1, p2, p3 are a group of query objects, and {t1, t5},
{t2, t4}, {t4, t6} are the corresponding keywords of query objects. Table 1 illus-
trates the entire iteration process. Initially, the candidate set C̃ is empty. Then
every query object is visited iteratively and each keyword is used to combine
with the existing combinations. In step 4, p3 is visited and the keywords of p3
are t4 and t6. For the keyword t4, four combinations are formed (e.g, {t1, t2, t4},
{t1, t4, t4}, {t5, t2, t4}, {t5, t4, t4}). However, {t1, t4, t4} and {t5, t4, t4} are not
CKSs because the duplication of t4. And at last, there are six qualified sets
which consist of three distinct keywords.

3.3 The Collective Influence Zone

In this phase, the CIR for each CKS is achieved. In order to compute the result
region of RCoSKQ, we compute CIR for each CKS and then combine all returned
regions. The detail procedure of calculating CIR is similiar to the basic idea of
InfZone [2]. But there are some differences, first we iteratively compute the
influence zone IZone for each query object. Then, not all of the non-leaf nodes
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Fig. 1: The Collective Influence Zone

need to be verified whether they will affect IZone, only those non-leaf nodes
need to be considered whose inverted files contain keywords of query object.
After computing IZone for each query object, the CIR is formed by computing
the intersection of IZones and the result of RCoSKQ is returned.

Fig.1 shows an example of CIR. The CKS is {vegetable,beer} and the shadow
area is the corresponding CIR. The formation of the region is based on Half-space
pruning. For example, Bp1:q1 is the perpendicular bisector of the dotted line
between q1 and p1. The Half-space that contains q1 is represented with Hq1:p1

and the half-space Hp1:q1 is an area for each user in which p1 is taken as its
nearest neighbor with the query keyword vegetable. Given q1 as a query object,
Bp1:q1, Bp2:q1 and Bp4:q1 are corresponding perpendicular bisectors because p1,
p2 and p4 all cover vegetable. In the same way, we get a region formed by Bp3:q2,
Bp4:q2 and Bp5:q2. The lemma below shows that the intersection of the two
regions is a CIR.

Lemma 1. Given a group of query objects Q = {q1, q2, ..., qn} and a correspond-
ing CKS = {CKS1, CKS2, ..., CKSm}, R̃ = {r1, r2, ..., rn} is a set of regions
produced by each qi and all the spatial objects cover wi. The intersection of
elements of R̃ is the CIR of Q.

Proof. Assume Q = {q1, q2} is a set of query objects, r1 is a region which is
produced by all the half-spaces of q1 between q1 and competitors which may have
greater influence than q1. According to Half-space pruning, for any object in r1,
q1 must be its nearest neighbor compared with competitors. And the region of q2
is r2. Let R be the intersection of r1 and r2. So each object p in R will take
q1 or q2 as nearest neighbor under different keywords. Let Q’ = {p1, p2} which
represents another combination. Thus there must be Cost(p,Q’) > Cost(p,Q),
which proves the region is CIR.

4 The Optimized Algorithm

The efficiency of the algorithm CIRB decreases dramatically as problem size
increases. There are two drawbacks, first each time we compute CIR for every
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Fig. 2: Optimized pruning method

CKS, CIR is initialized with the whole data set. Second, it is time consuming to
combine all the CIRs.

In this section, we introduce an effective pruning method which can simplify
the CIRB. Same with the algorithm InfZone [2], Cp denotes a circle centered at
p with radius equal to dist(p,q), where dist(p,q) is the distance between p and q.
The query object q may not be the nearest neighbor of p if an entry intersects
with Cp because there may be objects closer to p than q in the entry. In InfZone,
it is proved that only the convex vertexes of the unpruned polygon are used to
judge whether an entry may influence the region. In Fig.2 (a), only v1, v2, v3 and
v4 are used to construct circles Cv1, Cv2, Cv3 and Cv4. Any entry intersects with
these circles will be used to prune the unpruned polygon. In CIRB, an unpruned
polygon is returned for each query object. CIR is returned after intersecting
all these unpruned polygons. So we should find that the regions pruned when
dealing with the former query objects must not be CIR. However, lots of objects
will be used to prune the region which has been pruned before in CIRB.

In our Optimized CIRB algorithm (OCIRB), the unpruned polygon is set to
the initial region of current query. When the last query object is processed, the
region returned is the CIR of CKS. Fig.2 (a) shows an example and the shadow
area depicted is the unpruned polygon of q1. When q2 is processed, take object
p5 as an example, p5 will not be visited because no Cv intersects with p5. In
CIRB, the initial region is the whole data set, p5 intersects with Cv5 so it is used
to prune the region. However, Bp5:q2 not intersects with the unpruned polygon
of q1 which means the visit of p5 is redundant.

Now, we analyse the number of facilities used to compute the CIR. We assume
that the facilities are uniformly distributed in a unit space and the number of
facilities is |F|. The expected area of a randomly chosen facility point is 1/|F|(the
sum of the areas of all the influence zones is 1 [2]). We approximate the influence
zone to a circular shape having the same area. In Fig.2 (b), there are two query
objects q1 and q2 both with radius r. A facility can be ignored if it lies at a
distance greater than 2r from q1 or q2. In CIRB, the area of facilities to be
considered is S1 = 2πr2. In OCIRB, for q2, only objects located in the shadow
area will be traversed to compute the CIR. The area needs to be considered is
S2 = 2r2 arccos(d/2r)−1/2d

√
4r2 − d2, d is the distance between q1 and q2. Note

that d > 4r means that there is no CIR of query set {q1,q2}. Thus, for query set
{q1,q2}, the amount of calculations for (S1 − S2)|F| facilities are pruned off.
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5 Experiments

5.1 Setup

Table 2: Dataset statistics

Statistics Hotel GN
Number of objects 20,790 627,773
Total unique terms 602 102,037
Avg unique terms per object 3.9 3.3

Here we use two datasets, namely, GN(extracted from geonames.usgs.gov)
and Hotel(extracted from www.allstays.com). Table 2 shows some properties of
the two data sets. Several synthesis data sets which are randomly generated.
Each object has a location and a set of words.

We evaluate the first algorithm CIRB from Section 3 which is based on Half-
space pruning and the optimized algorithm OCIRB from Section 4. Two metrics
I/O cost and running time are used to evaluate the performance of our algorithm.
The I/O cost is measured as the number of index nodes accessed from the disk.
The running time is measured as the time duration from the beginning of the
algorithm to the end.

In each experiment, we generate 30 groups of query sets and then report the
average I/O cost and average running time. The default numbers of query objects
(e.g., |Q|) and terms per object (e.g., |p.ψ|) are set to 3 and 4, respectively. We
first randomly choose an object in database space and then search a set of objects
near to the object, a set of query objects is selected from these objects. Both
algorithms are implemented in Java and ran on a PC equipped with an Intel 2.1
GHZ Xeon E5-2620 CPU and 16 GB RAM.

5.2 Performance Evaluation
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Fig. 3: The response time and I/O cost on two real data sets

Effect of |Q|: In the first set of experiments, we sought to analyze how
response time and I/O accesses are impacted by the number of query objects.
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The experiments are conducted on both real data sets GN and Hotel. The results
are reported in Fig.3. Fig.3(a) and Fig.3(b) show the effect on response time
when varying the number of query objects. As the number of query objects
increases, the possible combinations of keywords also increase and more region
needs to compute. As OCIRB avoids a lot of unnecessary regions pruning, it
outperforms CIRB in both data sets. Fig.3(c) and Fig.3(d) shows the result
of I/O accesses when varying the number of query objects. The I/O accesses
increase proportionally with the increase of |Q|, as the number of keywords in
CKS is directly related to the number of query objects which leads to more
relevant nodes visited. As a great number of nodes which will not affect the
unpruned polygon are ignored, the I/O accesses of OCIRB are much less than
CIRB.
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Fig. 4: Effect of |O|

Effect of datasize |O|: This experiment is to evaluate the performance of algo-
rithms both on response time and I/O accesses. Four data sets with cardinalities
of 250k, 500k, 750k and 1000k (i.e., 1 million) are randomly generated and the
keywords are randomly extracted from the unique terms of GN. The number of
query objects in a query is fixed at three. Fig.4 (a) shows the result of response
time when varying |O|. As more related objects are found and may be used to
prune the region, the response time of both algorithms increases rapidly. But the
OCIRB performs much better than CIRB, the reason is that computing a new
region is time consuming and OCIRB eliminates a lot of useless computation.
In Fig.4 (b), as the nodes of IR-tree increase when |O| increases, the number of
nodes visited augments and more time is spent to traverse IR-tree. Less objects
accessed makes OCIRB handle fewer nodes.
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Effect of |o.ψ|: We further evaluate the response time and I/O accesses of the
two methods on synthesis data sets under different number of keywords per ob-
ject. The sizes of data sets are fixed at 500k and the number of query objects is
fixed at three. The |o.ψ| is roughly 2, 4, 6 and 8. Fig.5 (a) shows the response
time when varying |o.ψ|. As |o.ψ| increases, the number of combinations of key-
words augments dramatically. In Fig.5 (b), the I/O accesses increase obviously
because the number of combinations increases exponentially. The performance
is obviously improved in OCIRB because the number of objects processed is
reduced.
Effect of data distribution: In Fig.6, we study the effect of data distribution
on both algorithms. U, R and N correspond to Uniform, Real, and Normal
distributions, respectively. The synthetic data sets contain the same number of
points as GN, which contains 627,773 points. The keywords of each data set
are randomly extracted from the unique terms of GN. Fig.6 demonstrates that
OCIRB performs better than CIRB.
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Fig. 6: Effect of data distribution

6 Conclusion
In this paper, we identified a new problem Reverse Collective Spatial Keyword
Querying, named RCoSKQ. A RCoSKQ returns a region in which the query ob-
jects will be the best group of objects which have the highest spatial and textual
similarity. An efficient algorithm CIRB which based on Half-space pruning is
developed and an IR-tree is constructed to retrieve spatial-textual objects. All
the CKSs of query objects are enumerated firstly, then we compute CIR for each
CKS and combine them together. We also adopt a spatial pruning method, which
reduces the number of objects visited, to improve the efficiency of CIRB algo-
rithm. Extensive experiments on both synthetic and real data sets demonstrate
the effectiveness of our algorithm.
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