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Abstract— This paper addresses the problem of resilient
bipartite consensus for multi-agent networks in the presence of
misbehaving nodes. The bipartite consensus problem was first
studied by C. Altafini, and has been extensively studied in recent
years. The interaction representing the communication between
two agents is characterized by edge weights in a signed directed
graph where the positive weight of an edge implies cooperation
between the two agents while a negative one corresponds to
antagonism. Resilient consensus problems without antagonistic
interactions have been exhaustively studied, while the security
problem of bipartite consensus, to the best of our knowledge,
has not been studied yet. In this paper, we extend the resilient
consensus problem to the case when antagonistic interactions
exist. The developed results which are applicable for multi-agent
systems with continuous-time dynamics shows that all normal
nodes reach resilient bipartite consensus if the associated signed
digraph is structurally balanced and has sufficient connectivity
in terms of robustness. Numerical examples are provided to
illustrate our results.

Index Terms—Bipartite consensus, signed graph, resilient con-
sensus, antagonistic interactions, malicious attack.

I. INTRODUCTION

In recent years, the consensus problems of multi-agent

systems are of great academic vitality, mainly owning to

its wide applications in various areas such as distributed

classification, distributed optimization, formation control, and

sensor networks. While things become more complicated in

consensus problems because of the malicious attackers in

recent years. Compromised nodes in the system may cause

irreparable harm to the whole consensus process. Therefore,

it is important to implement embedded security consensus

algorithms in multi-agent systems to make safe and reliable

performance possible.

Reaching consensus in the presence of faulty or misbehav-

ing nodes has received significant attention from the research

community [1]–[6]. In some researches such as [3], [7],

connectivity, which is one of the conventional graph theoretic

property is utilized to study the secure robustness of a certain

network. Their results show that a network with at most F
malicious nodes can reach consensus if the connectivity of

the network is no less than 2F +1. However, these consensus

algorithm usually do not suits large-scale networks since they

either require that the normal nodes have more or less some
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non-local information, or need the topology of the network

to be complete, i.e., a complete graph is needed, and both of

them cause more resource consumption. Local communication

is more suitable for a large-scaled network since it requires

less communication between agents. In [8], the authors first

propose an algorithm using only local information to solve the

consensus problem in the presence of Byzantine faults in finite

time. To enhance resiliency, LeBlanc et al. [4] propose a novel

topological property, named network robustness, and provide

a comprehensive characterization of the network topology.

The network robustness suits the algorithm that only local

information is needed, such as weighted mean subsequence

reduced (W-MSR) algorithms [9], [10]. The main idea of W-

MSR algorithms is that each normal node removes the extreme

values with respect to its own value. Then, combining the

ideas from the robustness property and W-MSR algorithms,

[4] propose a resilient consensus strategy for Byzantine nodes

under both F -local and F -local thread models. While W-MSR

used in [4] may not suitable when antagonistic interactions

exist, so we extend it to AW-MSR algorithm(absolute weighted

mean subsequence reduced, see Section V-A for details) to suit

our case.

The previous consensus algorithms which are originated

from iterative procedures of decision-making, are based on

a cooperation interaction between agents [11]–[13], i.e., all

agents consider its neighbors are “friends”. While, motivated

by opinion dynamics over social networks [14]–[16], this

“cooperation” idea of consensus has been extended to a more

general multi-agent systems which allows both cooperation

and antagonistic relationships. It is common in many an-

tagonistic systems such as two-party political systems, rival

business cartels, and teams opposed in a sport match, etc.

Altafini start the research on consensus algorithm for multi-

agent networks with antagonistic interactions [17]. In his work,

the network modeled by a signed digraph, and a specific

consensus which establishes bipartite consensus is reached,

where all values of the agents are the same in modulus but

are different in sign. However, the security problem of bipartite

consensus is not considered by Altafini, he only deals with the

bipartite consensus issues. The security problem of bipartite

consensus has not attracted sufficient attention.

In this paper, we extend the resilient consensus problem to

the case where antagonistic interactions exist, or we can say
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that we extend the bipartite consensus problems to the case

when attack exists. Our aim in this paper is to characterize the

structure of the network topology necessary and sufficient to

achieve bipartite consensus in the presence of malicious nodes.

We prove that it can be transfered to a standard consensus

problem so that we can solve it by using existing methods

and theories, and we show that given a structurally balanced

digraph, resilient bipartite consensus can be reached under F -

local attack model if it has sufficient network robustness.

This paper is organized as follows. After discussing related

work in Section II, we introduces the relevant notations and

preliminaries which are needed in the paper in Section III.

In Section IV, we describe the problem formulation. Resilient

consensus algorithm is introduced in section V. Section VI

presents the main results. Some numerical example are pre-

sented for illustration in Section VII. Finally, Section VIII

concludes the paper.

II. RELATED WORK

Resilient consensus is a special case of distributed con-

sensus. It is assumed that a limited number of malicious

nodes are present that aim to disrupt consensus process by

providing false data to neighboring nodes [18]. The existing

literature most closely related to this paper are the first

order resilient consensus results of [4], [19], [20], and the

second order resilient consensus results of [21], [22]. In [4],

[5], [22], resilient consensus problems are considered under

a discrete-time model. While in [20], [23], [24], resilient

consensus problems are considered under a continuous-time

model. [23] and [25] have studied resilient consensus problem

with quantized communication network. Recently, the notion

of r-robustness in graphs, introduced in [19] and [20] has re-

ceived much attention in characterizing resilience of consensus

process for multi-agent networks in adversarial environments.

In [10], the authors have shown that r-robustness property

of the graph in general is a stronger certificate of structural

robustness as compared to the network connectivity. Contrary

to the approach of achieving desired r-robustness in graphs

by strategically adding edges [26]. The author in [27] use the

notion of trusted nodes, and show that by selecting a small

subset of nodes as trusted, one can achieve any desired value

of r-robustness.

Different from above literature that all the agents achieve

their common goals due to cooperation, antagonism is also

common in real-world networks. Altafini [17] first study the

consensus problem with antagonistic interactions. He show

that on a signed network, all nodes could reach bipartite

consensus if the effective connectivity condition is satisfied.

Since then, the bipartite consensus in a finite time and the

bipartite consensus under switching topology network are

studied by [28] and [29] respectively.

III. NOTATIONS AND PRELIMINARIES

In this section, we introduce some relevant notations and

preliminaries that are needed for signed digraphs and bipartite

consensus problem. In addition, we introduce some concepts

of network robustness which is useful for our problems.

A. Notations

Throughout this paper, we denote the set of integers by

Z, and the set of real numbers by R. m : n(m,n ∈ Z)
stands for the index set {m,m + 1, ..., n}, where m ≤ n.

1n = [1, 1, ..., 1]T ∈ R
n, and diag(d1, d2, ...dn) stands for

a diagonal matrix whose diagonal entries are d1, d2, ...dn,

and off-diagonal entries are all zero. We divide all the labels

denoted by P of nodes of the network into two parts, I
stands for the normal part, and M stands for the malicious
part. Obviously, I ∪ M = P, I ∩ M = ∅. Let D = {D =
diag(ζ), ζ = [ζ1, ...ζn], ζi ∈ {1,−1}} be the set of all

diagonal matrix whose diagonal entries are limited to {1, -

1}. We denote sign(x) as the sign function of a scalar x ∈ R,

i.e.,

sign(x) =

⎧⎨
⎩

1, x > 0
0, x = 0
−1, x < 0.

(1)

Additionally, we denote G(A) as a signed digraph whose

adjacency weight matrix is A.

B. Signed digraphs

The interaction network can be modeled by a signed di-

graph(short for ”directed graph”) which is represented by

a triple G = (V,E,A), consisting of a vertex set V =
{v1, v2, ..., vn}, an edge set E ⊆ V × V = {(vi, vj) :
vi, vj ∈ V } which is defined such that (vj , vi) is a directed

edge from vj to vi, i.e., vertex vj is a neighbor of vertex

vi, and an adjacency weight matrix A = (aij) ∈ R
n×n

which is defined such that (vj , vi) ∈ E ⇔ aij 	= 0, and

otherwise, aij = 0. Let Ni = {j : (vj , vi) ∈ E} denote

the set of labels of those vertices that are neighbors of vi. A

digon in a digraph is a pair of edges sharing the same nodes

(vi, vj), (vj , vi) ∈ E. We call a graph is digon sign-symmetric

[17] if aijaji ≥ 0, ∀i, j ∈ 1 : n, which means that the edge

pairs of all digons cannot have opposite signs. We assume

that throughout this paper, graph G has no self-loops, i.e.,

aii = 0, ∀i ∈ 1 : n, and G is digon sign-symmetric.

Definition 1: Given a signed digraph G, we say G is

structurally balanced if there is a partition {V1, V2} of its set of

vertices V , V1∪V2 = V and V1∩V2 = ∅, where all edges with-

in V1 and V2 are positive while all edges between V1 and V2

are negative. Formally, aij ≥ 0 for ∀vi, vj ∈ Vp(p ∈ {1, 2})
and aij ≤ 0 for ∀vi ∈ Vp, vj ∈ Vq, p 	= q(p, q ∈ {1, 2}),
otherwise, G is structurally unbalanced.

A structurally balanced graph implies that a community

is divided into two hostile camps, such as votaries of two

political parties, or teams opposed in a sport match. They

cooperates with members within his own camp while competes

with his opponents. The following lemma gives the sufficient

conditions of signed graph to be structurally balanced:
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Fig. 1: Illustration of structurally balanced and unbalanced

graphs. Fig. 1(a) can be divided into two blocks V1 = [1, 4]
and V2 = [2, 3] and the edges inside V1 and V2 are positive,

while edges between V1 and V2 are negative. While Fig. 1(b)

cannot since edge between node 4 and 2 is positive.

Lemma 1: We say a signed digraph G is structurally bal-

anced if there exists a matrix D ∈ D such that D−1AD is

nonnegative.

Proof: According to definition 1, we can easily choose a

D = diag(ζ), ζ = [ζ1, ...ζn], ζi ∈ {1,−1} such that ζi =
+1 when vi ∈ V1 and ζi = −1 when vi ∈ V2 to obtain a

transformed matrix DAD that has all nonnegative entries.

As depicted in Fig. 1, a structurally balanced signed digraph

can be divided into two blocks {V1, V2}, here V1 = [1, 2], V2 =
[3, 4], all positive edges connect nodes within V1 or V2, and

negative edges connect nodes between V1 and V2. Here Fig.

1(a) is structurally balanced while Fig. 1(b) is structurally

unbalanced.

Obviously, we can notice that there is a node remove

operation in AW-MSR(see V-A for details) algorithm which

means that the interaction network is changing over time. So

we need the following definition:

Definition 2: The joint graph of G during time inter-

val [t1, t2] is defined by G[t1, t2] =
⋃

t∈[t1,t2] Gt =
(V,

⋃
t∈[t1,t2] Et). G[t1, t2] is called uniformly jointly quasi-

strongly connected(UQSC) if there exists a constant T ≥ 1
such that G[t, t + T ] has a spanning tree for any t ≥ 0, and

G[t1, t2] is sign consistent.

A sign consistent joint graph G[t1, t2] means that the nodes

in the two hostile camps will not change during interval [t1, t2]
given that the signed joint graph is structurally balanced.

C. Bipartite Consensus

In this paper, we consider a interaction multi-agent network

modeled by a signed digraph G which consists of n agents

indexed 1 through n. Each agent is regarded as a vertex in

G, and the opinion of the i-th agent is denoted by xi ∈ R,

so the opinion of all the agents can be defined as a vector

x = [x1, x2, ...xn]
T ∈ R

n. We say a multi-agent system

reaches bipartite consensus if all its n agents converge to

values that are the same in modulus but different in sign. More

specifically, we have the following definition:

Definition 3: The system reaches a bipartite consensus, if

for any x(0) (initial state of all agents), there exists x∗ > 0
such that

lim
t→+∞ |xi(t)| = x∗, i ∈ 1 : n, x∗ ∈ R, (2)

where xi(t) ∈ R is the state of agents at time t, and x∗ ∈ R

refers to their final state.

D. Network Robustness

Traditional secure and fault-tolerant consensus algorithms

typically assume knowledge of nonlocal information which

is not suitable for large-scale dynamic networks. In [4],

the authors proposed a novel graph-theoretic property which

called network robustness, and designed consensus algorithm

using only local information that is resilient to faults and

compromised nodes. This robustness notion is very useful in

characterizing resilience of various dynamical processes over

networks in adversarial environments.

Definition 4: (r-reachable set [4]): Given a digraph G =
{V,E} and a nonempty subset S ⊂ V , we say S is a r-

reachable set if there exists at least one node i ∈ S that at

least r nodes in Ni comes from outside S, i.e., |Ni \ S| ≥ r,

where r ∈ Z ≥ 0.

As illustrated in Fig. 2, set S is r-reachable if it contains

at least one node that has at least r neighbors outside of S. It

means that at least one node inside S can obtain information

from a certain number of nodes out of S and parameter r
quantifies the information flow. The r-reachability property

pertains to a given set S, and we also need a generalization

definition of this notion of redundancy for the entire interaction

network.

Definition 5: (r-robustness [4]): Given a digraph G, we say

G is r-robust if for every pair of nonempty, disjoint subsets

of V , denoted by S1, S2, at least one of them is r-reachable.

By employing the notion of robustness, some properties of

the r-robust graph are recalled below.

Lemma 2: Consider an r-robust graph G = (V,E). Let Ĝ
be the graph generated by removing up to s(s < r) incoming

edges of each node of V , then, we say that Ĝ is an (r − s)-
robust graph.
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1 2 31 2 3
S

r
Fig. 2: Illustration of an r-reachable set of nodes. Set S is r-

reachable since node 2 has more than r neighbors from outside

S.

Lemma 3: Graph G contains a spanning tree if and only if

G is 1-robust.

Proof: sufficiency: By contradiction, we assume that G
contains a spanning tree while it is not 1-robust. According

to definition 5, their exists two disjoint subsets, S1 and S2,

who do not have neighbors outside their own set. Then their

is no information flow between S1 and S2, which contradicts

the definition of spanning tree.

necessity: Similarly, we assume that G does not contain a

spanning tree. The adjacency matrix A of G is decomposable

according to [30], [31], which means their exists two sets

S1 ∪ S2 = V and S1 ∩ S2 = ∅, and their are no information

flow between S1 and S2 which contradicts the definition of

1-robust.

E. Laplacian matrix

To establish our results, we need to introduce some prop-

erties of laplacian matrix. Given a signed digraph G, and its

adjacency matrix A, the following lemma disclose the rela-

tionship between the eigenvalue distribution of the laplacian

matrix of A and the spanning tree property of G.

Lemma 4: If G is structurally balanced, then 0 is the simple

eigenvalue of L and all the other eigenvalues have positive real

parts if and only if G contains a spanning tree.

Proof: Following from Gershgorin’s disc theorem [32], for

a directed graph G, all of the nonzero eigenvalues of L of G
have positive real parts. The proof follows immediately from

the following equivalent conditions:

1) Graph G contains a spanning tree and structurally bal-

anced.

2) ∃D ∈ D such that D−1AD has all nonnegative entries

and G contains a spanning tree.

3) ∃D ∈ D such that D−1LD has a simple eigenvalue 0

and its corresponding eigenvector is 1.

Condition 1) and condition 2) are equivalent according to

Lemma 1. Note that laplacian matrix L has zero row sums,

0 is thus an eigenvalue of L with its associated eigenvector

1, where 1 = [1, ..., 1]T . Condition 3) and condition 2)

are equivalent since L and D−1LD are isospectral, i.e.,

sp(L) = sp(D−1LD), according to proposition 2 of [17].

IV. PROBLEM FORMULATION

In this section, we formulate our problems. Firstly, we

introduce the update model, i.e., the consensus protocol in

the presence of antagonistic interactions. This is different

from conventional consensus protocols which only consider

the case of cooperation interactions. And therefore, we need

a new definition of laplacian matrix corresponds to the signed

network. Secondly, the thread model definition is given in the

next subsection. Finally, we formally define the concept of

resilient bipartite consensus.

A. Update Model

As mentioned above in section III, an adjacency matrix A ∈
R

n×n can be assigned to a signed weighted digraph which

can represented by G(A). The Laplacian matrix is defined as

follow:

L = C −A

where

C = diag(c1, ..., cn), ci =
n∑

j=1

|aij |, i ∈ 1 : n,

and aij are assumed to satisfy the following assumption.

Assumption 1: For each i ∈ 1 : n, there hold aii = 0 and

n∑
j=1

|aij | = 1,

for all time t. There exists a number α > 0 such that |aij(t)| ≥
α when |aij(t)| > 0 for all i, j ∈ 1 : n and t.

The elements in L is therefore,

lij =

{ ∑
j∈Ni

|aij |, k = i

−aik, k 	= i.
(3)

The normal agents update their opinions in accordance with a

distributed protocol as follows:

ẋ(t) = −L[A(t)]x(t), t ≥ 0, (4)

which in components reads

ẋi(t) =
∑
k∈Ni

|aik(t)|(sign(aik(t))xk(t)− xi(t)), i ∈ I, (5)

while the compromised nodes update their opinions in a

arbitrary function f ′i(∗), i ∈M .

B. Thread Model

Usually, the thread model in multi-agent systems consist of

two aspects, one is the method of attack and the other one is

the scope of thread.

Definition 6: A node vi ∈ V is said to be Byzantine if it

has the following features:

1) sends different values to different neighbors at the same

time.

2) updates its value in an arbitrary function, i.e., f ′i(∗), i ∈
M .

3) change its attack target or abandon at any time.

Definition 7: A node vi ∈ V is said to be malicious if it

satisfy the following features:

1) sends the same values to all its neighbors at the same

time.

1265



2) updates its value in an arbitrary function, i.e., f ′i(∗), i ∈
M .

Note that Byzantine nodes are more harmful compared to

malicious nodes because they cover almost all the features

that other kinds of attacks possess. So we say an algorithm is

resilient to almost all other attack if it is resilient to Byzantine

attack. Having defined the type of misbehavior in the network,

it is necessary to define the number of misbehaving nodes,

i.e., the scope of threads.

Definition 8: (F -total set [4]): A set S ⊂ V is said F -

total if it contains at most F nodes in the whole network, i.e.,

|S| ≤ F where F ∈ Z ≥ 0.

Definition 9: (F -local set [4]): A set S ⊂ V is said F -local

if it contains at most F nodes in the neighborhood of the other

nodes for all t, i.e., |Ni[t] ∩ S| ≤ F, ∀i ∈ V \ S, ∀t ∈ Z ≥ 0.

Definition 10: A set of adversary nodes is F -totally bound-

ed or F -locally bounded if it is an F -total set or F -local set

respectively. We refer to these thread scopes as the F -total or

F -local models, respectively.

Obviously, if there is no number limitation of the misbe-

having nodes, it’s hard for the multi-agent system to achieve

consensus since there may be too many adversary nodes. And

it is also difficult for us to analyze the security issues.

C. Resilient Bipartite Consensus

Given the thread model and scope of threads, we now

formally define resilient bipartite consensus.

Definition 11: (Resilient Bipartite Consensus): The system

reaches a resilient bipartite consensus under F -total model or

F -local model attack if all the normal nodes reaches a bipartite

consensus(see III-C), i.e,

lim
t→+∞ |xi(t)| = x∗ > 0, i ∈ I, x∗ ∈ R, (6)

for any choice of initial values.

Different from resilient asymptotic consensus in [4], here

resilient bipartite consensus requires an absolute agreement,

i.e., they converge to values that the same in modulus but

different in sign.

V. RESILIENT CONSENSUS ALGORITHM

Their are various approaches to facilitate consensus in con-

ventional consensus problems under attacks. Here we extend

W-MSR algorithm to AW-MSR algorithm so that it can suit the

case when antagonistic interactions exist. Character A stands

for “absolute”, means that the weight in new version update

rule (see step 3)) is different, we need its absolute value.

A. AW-MSR Algorithm

In fact, AW-MSR only makes some modification on the

basic update rule. At every time-step t, each normal node i
obtains the values from its neighbors. Under the definition of

thread model and scope of thread, at most F nodes of i’s
neighbors may be misbehaving. Unfortunately, node i cannot

determine which neighbor(s) may be compromised. The core

idea of AW-MSR is that each node removes the extreme values

received from its neighbors with respect to its own value at

every time-step, while when the value of malicious node is

not out of a certain bounds(with respect to all i’s neighbors

and its own value), and it may not be removed, it does not

affect very much since it misbehaves just like a normal node

at current time-step. Specifically,

1) Each node obtains values from its neighbors according

to update rule(equation 5), and forms a sorted value list

values.

2) Remove the nodes whose values are strictly larger or

smaller than its own value xi(t), but only F can be

removed respectively. More specifically, if there are less

than F values strictly larger(or smaller) than its own

value, then, remove all values that are strictly larger(or

smaller) than its own. Otherwise, remove precisely the

largest(or smallest) F values in values.

3) Each normal node updates according to the new version

of rule

ẋi(t) =
∑

k∈Ni\Ri(t)

|aik(t)|×

(sign(aik(t))xk(t)− xi(t)), i ∈ I. (7)

Here Ri(t) stands for the set of nodes removed by node

i in at time-step t in step 2).

Note that the weight of an edge is now different from that

when only cooperation exists. Here we assume that aik(t)
satisfies assumption 1 and

|aik(t)| = 1/|Ni \Ri(t)|,
where |Ni\Ri(t)| is the number of set Ni\Ri(t). We consider

F as the parameter of AW-MSR under F -local or F -total

model. Note that the set of nodes removed by node i, Ri(t),
is possibly time-varying. Hence, AW-MSR effectively induces

switching behavior even though the topology of the interaction

network is fixed. When in the case of a signed digraph, a

topology switching may change the connectivity property of

the network, and it may not satisfy the conditions to achieve

the bipartite consensus unless it has sufficient connectivity in

terms of robustness.

VI. MAIN RESULTS

This section starts with the case of signed network under

no attack and the network is time-invariant, where sufficient

and necessary conditions are given for reaching bipartite con-

sensus. Note that the network that AW-MSR algorithm is not

applied is time-invariant, which means that its corresponding

adjacency matrix A is static, i.e., A(t) ≡ A(0). When AW-

MSR algorithm is applied, the situation may be different since

AW-MSR causes a topology switching, i.e., the network is

time-varying. So, we also give the result of the case when the

network is time-varying(AW-MSR is applied). We then make

the network expose in a F -local attack, and see its converge

process. Finally, we check the performance of AW-MSR with

parameter F under F -local attack. Note that here we only

consider the F -local model since F -total model are similar to

it.
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Theorem 1: Protocol (4) establishes bipartite consensus if

and only if G[A] is structurally balanced and contains a

spanning tree.

Proof: Given that graph G is structurally balanced, there

exists a diagonal matrix D = diag(d1, ..., dn) ∈ D, where

di = 1 if i ∈ V1 and di = −1 if i ∈ V2. Note that we only

consider the case when V1 	= ∅ and V2 	= ∅. According to

lemma 4, applying a gauge transformation D, we have

z(t) = Dx(t),

since D−1 = D,x = D−1z, then, system (4) is transformed

into

ż(t) = −L[|A|]z(t), t ≥ 0, (8)

where

L[|A|] = LD = C −DAD,

LD is the new laplacian matrix corresponds to adjacency

matrix of G. Note that this is a standard consensus problem,

according to [33], we have

lim
t→+∞ z(t) = vT z(0)1 = vTD−1x(0)1,

where v = [v1, v2, ..., vn]
T is the nonnegative left eigenvector

of D−1LD and its corresponding eigenvalue is 0 [33], and

vT 1 = 1, i.e., vT (D−1LD) = 0. So, the consensus solution

of system (4) is

lim
t→+∞x(t) = vTD−1x(0)D1,

Therefore protocol (8) establishes consensus, corresponding to

bipartite consensus of protocol (4).

Given a set of structurally balanced signed digraphs with

the same weights but different signs. For the adjacency matrix

A of each one of them, we can find a matrix D ∈ D such

that D−1AD is nonnegative, means that all these networks

are related by gauge transformations and all are isospectral,

i.e., the corresponding Laplacians shares the same convergence

processes. Thus applying a gauge transformation will not

change their absolute values and convergence processes.

Theorem 1 considers the static case when their are no attack.

While when AW-MSR algorithm is used, the graph topology

is time-varying because of its node remove operation. Thus,

we also give the following theorem of time-varying case.

Theorem 2: Protocol (4) establishes bipartite consensus if

and only if G[A(t)] is structurally balanced, sign consistent

and UQSC.

Proof: Since the network is time-varying, we introduce a

sequence of adjacency matrices {A1, ..., Am} corresponding

the graph at different time. Note that G[A(t)] is sign con-

sistent, so that if Ai, i ∈ 1 : m is structurally balanced,

Ai, i ∈ 1 : m share the same matrix D ∈ D such that DAiD
have all nonnegative entries. Similar to proof of theorem 1,

Then we transfer protocol (4) into

ż(t) = −L[|A(t)|]z(t), t ≥ 0, (9)

where

L[|A(t)|] = LD(t) = C −DA(t)D.

1

2

3

4

5 6

-

+

Malicious nodeNormal node

+
Cooperation interaction

-
Antagonistic interaction

Fig. 3: A 3-robust graph (node 3 is malicious node). It can

be divided into two parts V1 = [1, 2, 5] and V2 = [3, 4, 6].
Nodes in V1 and V2 cooperate and nodes between V1 and V2

compete.

Note that this is also a standard consensus problem, and

according to [33], we can obtain our results similar to theorem

1. Then we have the following corollary when AW-MSR

algorithm is used.

Corollary 1: Consider a time-invariant structurally bal-

anced network modeled by a signed digraph G = {V,E,A}
where each normal node updates its value according to the

AW-MSR algorithm with parameter F . Bipartite consensus

can be achieved if the graph is (2F+1)-robust, and V1 = V2 	=
∅.

Proof: According to lemma 2, the topology under AW-MSR

with parameter F is at least 1-robust, since each node removes

at most 2F from its neighbors at time t. And G[A(t)] contains

a spanning tree since it is at least 1-robust according to lemma

3. Obviously, this is a time-varying case the same as theorem

2.

Theorem 3: Consider a time-invariant structurally balanced

network modeled by a signed digraph G = {V,E,A} where

each normal node updates its value according to the AW-MSR

algorithm with parameter F . Suppose assumption 1 holds,

resilient bipartite consensus is achieved if the topology if the

network is (2F+1)-robust under the F -local malicious model.

Proof: Similar to proof of theorem 1 and 2, we transfer

system (4) to (8). By transforming the bipartite consensus

problem into a standard consensus problem, we convert our

problem into the case of a resilient consensus problem, which

is just the same as the case in [4]. Note that the graph is

(2F+1)-robust. Under assumption 1, we can conclude that

graph G can achieve bipartite consensus according to Theorem

2 of [4].

Note that our results can be easily extended to F -total attack

model and (r, s)-robust cases in [4], here we omit for space

limitation.
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(a) AW-MSR algorithm is not adopted.

(b) AW-MSR algorithm is adopted.

Fig. 4: Simulation results for the network without attack.

VII. SIMULATIONS

In this section, we verify the theoretical results by using

some simulations. We first show that the system cannot achieve

bipartite consensus when AW-MSR algorithm is not used,

while it establishes resilient bipartite consensus under AW-

MSR with parameter F . We consider system (4) associated

with a structurally balanced, 3-robust signed digraph depicted

in Fig. 3, where the nodes are indexed 1 through 6. Suppose

that node 3 is compromised and turns a malicious node.

Its objective is to prevent the normal nodes from reach-

ing bipartite consensus. It can be divided into two blocks:

V1 = [1, 2, 5], V2 = [3, 4, 6], in which nodes in Vi, i ∈ {1, 2}
cooperates and nodes in Vi, Vj , i, j ∈ {1, 2}, i 	= j are

opposed. It will cost a considerable amount of time to verify

that Fig. 2 is 3-robust since there are no efficient algorithm

so far to compute the robustness of a graph. We assume the

initial state of this system is

x(0) = [−10, 3, 12, 19,−8, 20].
The results for the network of Fig. 3 are shown in Fig. 4

and Fig. 5. The green curves represents the consensus process

of nodes in V1 and blue curves for nodes in V2, the red

curve depicts the malicious(node 3) node’s changing tendency

over time. Fig. 4 shows the results of time-invariant and

time-varying(under AW-MSR) cases. Theorem 3 implies that

graph in Fig. 3 can sustain 1 malicious node under 1-local

model. As previously supposed, node 3 is the malicious node.

Obviously, node 3 is able to drive the normal nodes beyond

its convergence process when AW-MSR is not applied while

it fails whenever AW-MSR is used. Note that under AW-

MSR, although resilient bipartite consensus can be reached,

the consensus process are more or less affected by malicious

nodes. The final state of all the nodes may be different when

they are under no attack as we can see the difference between

Fig. 4(a) and Fig. 5(b).

(a)

(b)

Fig. 5: Performance of the network under 1-local attack: (a)

without AW-MSR algorithm and (b) with AW-MSR algorithm.

VIII. CONCLUSION

The resilient consensus problem has attracted much at-

tention due to its extensive applications in different areas.

Various approaches have been proposed to facilitate security

of consensus, while the case when antagonistic interactions
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exist has not been studied yet. In this paper, we have dealt

with this problem by introducing the concept of network

robustness and proved that the resilient bipartite consensus

could be established given a structurally balanced and robust

network. We showed that the resilient consensus problem in

the presence of antagonistic interactions can be transfered into

a standard consensus problem. The necessary and sufficient

conditions for reaching bipartite consensus among non-faulty

agents have been derived based on the graph topology notion.
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