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ABSTRACT With the prevalence of adopting data-driven convolution neural network (CNN)-based algo-
rithms into the community of digital image forensics, some novel supervised classifiers have indeed increas-
ingly sprung up with nearly perfect detection rate, compared with the conventional supervised mechanism.
The goal of this paper is to investigate a robust multi-classifier for dealing with one of the image forensic
problems, referred to as source camera identification. Themain contributions of this paper are threefold: 1) by
mainly analyzing the image features characterizing different source camera models, we design an improved
architecture of CNN for adaptively and automatically extracting characteristics, instead of hand-crafted
extraction; 2) the proposed efficient CNN-based multi-classifier is capable of simultaneously classifying the
tested images acquired by a large scale of different camera models, instead of utilizing a binary classifier; and
3) numerical experiments show that our proposed multi-classifier can effectively classify different camera
models while achieving an average accuracy of nearly 100% relying on majority voting, which indeed
outperforms some prior arts; meanwhile, its robustness has been verified by considering that the images
are attacked by post-processing such as JPEG compression and noise adding.

INDEX TERMS Camera model identification, deep learning, convolution neural network (CNN), passive
image forensics.

I. INTRODUCTION
With the development of digital technology, digital images
can be conveniently acquired from various camera devices,
and widely spread on social network platforms. Meanwhile,
digital images can be easilymanipulated using low-cost photo
editing software, or the relative information linking between
the image and digital camera can be maliciously removed by
unlawful criminals or unauthorized organizations, resulting
into the ownership infringement. Therefore, the study of
designing reliable and robust forensic methods, which makes
the community of digital image forensics receive an increas-
ing attention, is urgently needed by the juridical organization.

A. STATE OF THE ART
In recent studies, passive (or blind) image forensics with-
out requiring any embedded information such as digital

watermark or signature, dominates the research community
of digital image forensics. In general, passive image forensics
is a technique mainly focusing on two following problems:
image tampering authentication and image source identifica-
tion (see a complete overview in [1]–[3]). The image tamper-
ing authentication mainly addresses the problem of detecting
whether the image under investigation suffers attacks from
image post-processing, such as re-sampling [4], splicing [5],
copy-move forgery [6], median filtering [7], and JPEG com-
pressing [8].

The problem of image source identification can also be
defined as Source Camera Identification (SCI), which mainly
investigates the origin of the images. Specifically, forensic
investigators might devise the algorithms of SCI involving
three significant details: camera brands, camera models, and
even camera individual instances (see [9]–[11] for details).
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FIGURE 1. Illustration of a typical imaging pipeline within a digital still camera.

It should be noted that the problem of model identification
is addressed by different camera models, possibly involving
more than one instance for each given model. Still, we need
emphasize that the algorithm of individual instance identifi-
cation focuses on distinguishing different camera instances
with the same model. In this practical context, we propose to
study the algorithm of camera model identification.

Generally, the captured digital images is stored within
header files such as EXchangeable Image File (EXIF) and
JPEG headers. All recording information is contained in the
header files. Therefore, the forensic evidences can be easily
accessed by extracting the concerning information from the
header files, which serve as camera fingerprints. However,
the header files can be feasibly removed or replaced by
malicious criminals. Meanwhile, photographs posted on the
social networks, do not carry the header files or any other
information serving as camera fingerprints.

In that practical scenario, it is proposed to extract intrinsic
fingerprints existing among stages of the image acquirement
pipeline, involving the following primary steps: collecting
the incident lights onto the lens, filtering color channels
using a Color Filter Array (CFA) pattern, converting the
incident lights into an electrical current using a sensor, and
some other processing steps such as demosaicing, white
balancing, gamma correction, etc. (see Fig. 1). The readers
may refer to [12] for detail explanations. Then most of SCI
algorithms have been deeply investigated in virtue of the
image acquirement pipeline. In early studies, the estimation
of the CFA pattern or demosaicing algorithm [13], [14], lens
distortion [15], white balancing [16] have been utilized to
design the discriminators. In most literature of current stud-
ies, the Sensor Pattern Noise (SPN) caused by the limitations
of sensor manufacturing processes, mainly referring to as the
inhomogeneity of silicon wafer (see [17], [18]), has always
been proposed to design the general framework of an effective
classifier.

Based on the SPN features, most forensic classifiers can be
arbitrarily formulated into two categories: statistical model-
based algorithm, often defined as un-supervised method;
machine learning-based method, or named as supervised
method. Then let us specifically extend those two categories
of typical classifiers as follows.

• Statistical model-based algorithm: Lukas et al. [19]
first propose to utilize SPN,mainly referring to as Photo-
Response Non-Uniformity (PRNU) noise, to design
the classifier for identifying the source camera device.
Afterwards, the up-dated version of that classifier with
higher detection rate is established in [20]. Generally,
the value of Peak to Correlation (PCE) directly serves
as the threshold for discrimination. In fact, some other
prior arts also concentrate their studies on improving the
effectiveness and robustness of the PRNU-based frame-
work. In addition, even though Lukas et al. [19] and
Goljan et al. [20] have proposed to empirically evaluate
the proposed model and analyze the performance of the
detector, its theoretical performance is still unknown.
Till recently, the detectors of [21] propose to use
a novel SPN-based noise extracted from RAW for-
mat images, in terms of Poisson-Gaussian-distributed
noise, characterizing the features of each camera model,
to establish the classification under the framework of
hypothesis testing theory. Inspired by that work, the the
detector of [22] has been proposed to address the
problem of camera instance classification. Besides,
the novel SPN-based classifiers can be extended into the
design of classifying images based on JPEG format
images [23], [24]. More importantly, the series of detec-
tors [21]–[24] can theoretically give the upper bound
of the detection at the prescribed false alarm probabil-
ity, and theoretically established performance. Neverthe-
less, the statistical model-based algorithms only relying
the unique feature (SPN) have the limitations: 1) binary
classifiers cannot simultaneously discriminate different
camera models; 2) noise model is heavily dependent
of the image content, resulting into the unsatisfying
robustness of the proposed classifier. In this context, our
proposed robust multi-classifier with CNN can indeed
overcome those limitations.

• Machine learning-based algorithm: algorithms in this
category primarily rely on manually defined proce-
dures with feature extraction. The data-oriented frame-
work of learning-based algorithms not only extracts
SPN, but also other SPN-related features for establish-
ing the classifier. Generally, The labeled images with
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extracted features in the training stage are first used for
training a discriminator; and then in the testing stage,
the prior-trained classifier is used for identifying camera
model or instance. In the stage of feature extraction,
most of prior studies extracts a large scale of feature
matrices manually, which is inefficient, resulting in
unavoidable accuracy deviation. For instance, the limita-
tion of Support Vector Machine (SVM) with associated
learning algorithms is that setting of key parameters
directly determines if the optimal classification results
can be achieved [25]. Besides, the problem of robust-
ness to mismatch between training and testing dataset
remains open [19], [26]–[28]. The another limitation is
that binary classification results in multiple operations
when dealing with the problem of multi-classification
(see [29]).
Compared to the SVM-based algorithms, CNN-based
methods have unparalleled advantages in addressing
the problem of feature extraction. The optimized CNN
algorithm has the ability of modifying the typical
weight of neurons through calculating the gradient of
the designed loss function, which can learn feature
representations automatically and effectively. In recent
studies, due to the gradually improved superior capa-
bility of CNN dealing with the problem of classi-
fication, some forensic investigators propose a novel
framework with using CNN algorithm (see [7], [30]
for instance). To our knowledge, Tuama et al. [31], first
propose to use CNN-based classifier of identifying cam-
era model. Then the algorithm proposed in [32] further
improves that pioneer work, and validates the practica-
bility of adopting CNN to solve the problem of SCI.
It should be noted that although the algorithm of [32]
has achieved high accuracy, the designed classifier is
still a binary classifier. Besides, owning to that the
feature extraction is independent of classification pro-
cess, the detection accuracy is affected and complex-
ity of algorithm is increased. In this practical context,
we propose to establish CNN-basedmulti-classifier with
ability of simultaneously classifying different models.
Note that by using less training data, our proposed
algorithm slightly improves the detection rate of [32],
and meanwhile the number of classification capability
is up to 25 different models, larger than 18 models
of [32].

B. CONTRIBUTIONS OF THE PAPER
In this paper, we investigate the problem of SCI and pro-
pose a novel CNN-based multi-classifier for camera model
identification instead of utilizing a binary classifier. Different
from prior supervised algorithms, we focus on improving
the architecture of CNN by adopting a group of 3 × 3 and
1× 1 kernel convolutional layers which extract feature maps
adaptively and automatically. Finally, numerical experiments
demonstrate that our algorithm not only outperforms some
prior arts, but also performs its robustness when images are

FIGURE 2. Illustration of training pipeline: from dividing C% of an image
(the central portion) into K patches using sliding windows, extracting
features through CNN and outputing feature vectors to multi-classifier,
then exporting to N majority voting process.

attacked by post-processing such as JPEG compression and
noise adding.

C. ORGANIZATION OF THE PAPER
This paper is organized as follows. Sec. II gives the frame-
work of our proposed CNN model involving patch selection,
establishment of convolutional layer and classification layer.
In Sec. III, we specifically describe our proposed CNN-
based multi-classifier. Sec. IV presents the numerical results
over the benchmark image dataset, and also demonstrates the
comparison with prior arts. Besides, the robustness of our
proposed algorithm is verified. Finally, Sec. V concludes this
paper.

II. OUR PROPOSED CNN MODEL
In the following sections, we describe our model details
(see Fig. 2): (1) patch selection, we split a full-size image
into a set of non-overlapped patches and select high-quality
patches from it; (2) convolutional layer, we discuss each
component and structure of a convolutional layer; (3) clas-
sification layer, we investigate how classification layer uses
the features extracted by convolutional layer, and then explain
the architecture of our modified CNN. In general, (1) belongs
to image pre-processing; (2) is used for extracting features;
(3) serves for outputting prediction labels.

A. PATCH SELECTION
The first step of the proposed framework is to select patches
from a three color-channel image I belonging to the camera
model L, where L denotes one label ofN given known camera
models. It should be noted that each patch associated with
the same label inherits from the same source image I . We put
forward a ‘‘sliding window’’ algorithm by using a 64 × 64
square to crop central portion of the image I corresponding to
K extraction of non-overlapping patches. Then let us denote
each patch as Pk , k ∈ {1, . . . ,K }, that carries the relative
labels L from the camera model L (see Fig. 2 for detailed
illustration).

In this context, the proposed CNN model requires the
setting of input patch size with 64×64×3, in which the pixel
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intensity of each channel ranges from 0 to 255. Compared to
current CNNmodel for SCI, the reason for using the ‘‘sliding
window’’ algorithm can be explained as: (1) splitting images
into numerous patches results into efficiently augmenting
the number of training data; (2) feeding CNN model with
patches (portions of an image), instead of a full-size image
greatly reduces the size of CNNmodel, andmeanwhilemakes
CNN model very sensitive to feature extraction. After the
procedure of patch selection, we randomly shuffle all patches,
which is used for feature extraction based on our proposed
CNN model. In the next section, we mainly explore feature
extraction containing many convolutional layers.

B. CONVOLUTIONAL LAYER
The establishment of a convolutional layer usually consists of
two main stages: non-linear operation and linear convolution,
where non-linear operation usually includes the design of
activation function and pooling layer (see [7]). There are two
theories critical for linear convolution: receptive field and
shared weights. Receptive field refers to as the minimum size
of convolution matrices for each iteration, on which the pro-
cedure of feature extraction mainly relies. The shared weights
can cut down the number of parameters in the network, and
improve the efficiency of the proposed network (see [33]).
Besides, for the output of a convolutional layer, the activated
domain of a convolutional layer is defined as feature map, and
the shared weights of a convolution are used to define a filter.

A neural network without the activation function would
be simplified to a linear regression model. It has less power
to learn complex functional mappings from data, and does
not perform well in the practical classification. Therefore,
we add the activation function to each hidden layer in our pro-
posed CNN model. Among numerous activation functions,
rectification non-linearity (ReLU) [34]) has been verified
to greatly accelerate the convergence of stochastic gradient
descent (SGD) [35], and also performs very well in our
designed multi-classifier. ReLU activates all output units
with larger than zero, and meanwhile suppresses output units
with smaller than zero, resulting into that it can convert
computation-cost operations to simply limiting a matrix of
activations to zero relying on the prescribed threshold. That
property indeed helps our proposed multi-classifier improve
the detection performance. In the next section, we will dis-
cuss the design of the classification layer with feature maps
extracted by using convolutional layers.

C. CLASSIFICATION LAYER
In general, classification layer consisting of few fully con-
nected layers is characterized by most of the network’s
parameters. However, the establishment of fully connected
layers does not cost too much operation time. When con-
volutional layers extract the features, fully connected layer
feeds feature maps back to Hierarchical Softmax (see [36]),
that decomposes labels into a tree. Each label is then denoted
as a path along the corresponding tree. Besides, it should be
noted that a Softmax classifier trained at each node of the

tree is in order to disambiguate between the left and right
branch.

During the process of gradient descent, the back propaga-
tion algorithm constantly adjusts the model parameters to the
top layer of the CNN model in virtue of tuning loss function.
In that case, the CNN model can be trained to the optimal
correctness. However, it is unavoidable that the phenomenon
of overfitting occurs, which probably impairs detection per-
formance of our proposed multi-classifier. To prevent that
nuisance result, we denote a dropout regularization rate p%,
meaning that neurons with a probability of (1 − p%) are
abandoned at each level for the first two fully connected
layers. In the practical classification, the proposed dropout
algorithm increases the training convergence time, but greatly
improves the accuracy of our multi-classifier.

Last but not least, in our proposed architecture of CNN
model, we try to consider the mechanism of the voting
layer following Softmax (see Fig. 2), which helps our multi-
classifier make a final judgement. When an inspected image
is split into K patches, and to push into the trained CNN
model, each patch can obtain a classification result denoted
as a probability at the output layer. We formulate Vk majority
voting for those K patches, and the voting result is defined
as the final classified result using our multi-classifier. In the
following section, let us specifically extend the design of the
CNN-based multi-classifier for dealing with the problem of
SCI.

III. ESTABLISHMENT OF SCI MULTI-CLASSIFIER
A typical CNN architecture consists of convolutional, pool-
ing, and fully connected layers. When constructing a frame-
work of CNNmodel, the network designer needs consider the
problem of prescribing parameters, including the number of
layers for each type, the order of layers, the other parame-
ters of each layer (such as parameter initialization strategy,
convolution reception fields size, input and output size of
each layer). Fig. 3 illustrates the design of our proposed
CNN architecture. In the following paragraphs, we mainly
focus on strategies for designing the architecture, such as
the effectiveness of depth and width for feature extraction,
the design of receptive field for convolutional layer.

Nevertheless, the establishment of the CNN architecture is
a delicate step, meaning that the basic principle of designing
a network has to consider the characteristics of the input data.
On the one hand, a sufficiently wide neural network with
just a few hidden layers can approximately be formulated
by any polynomial function assuming that enough training
data is acquired (see [37] for instance). Wide network is good
at memorization, leading to a strong capacity to remember
more learned data. On the other hand, the benefit of multiple
layer (deep) network is that they can learn features at various
levels of abstraction and forecast information for the next
level. For instance, when we train a deep CNN to classify
images, edges will be integrated in the first several layers,
and the next layers will automatically train themselves to
identify the outline of an object in the image, then the next
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FIGURE 3. Architecture of the CNN, with 13 conventional layers, 3 fully connected layers, Table 1 describes detail configuration for every layers.

TABLE 1. Description details of CNN architecture layers configuration
in Fig. 3.

layers will learn even higher-order features such as the whole
object. Since the input data, referring to as patches, are not
very large, the neural network should be good at analyzing
difference between the pixel and its neighboring counterparts,
and have a strong predictive ability to characterize feature
maps. In general, a too wide network architecture can not
fully learn feature map; a too deep network architecture might
cause increment of the computational complexity. Hence, our
proposed network is neither too deep nor too wide.

For the part of the receptive field, our CNN-based multi-
classifier contains a group of convolutional layers with the
kernel size of 3 × 3 plus 1 × 1, instead of a single 5 × 5
layer [32]. Fig. 4 gives the illustration by using this strategy.
In the example, the effective area of the first convolutional
layer becomes a 5 × 5 block in Fig. 4 (c) after the first iter-
ation operation. In the second iteration operation, the block
surrounded by the red line, which is inherited from the first
convolutional layer (blue region) in Fig. 4 (c), is input of
the second convolutional layer. Although the second convo-
lutional layer kernel size is only 3×3, it has an effective area
of 5 × 5. This example verifies that a stacked small kernel
convolutional layers (3× 3) can replace a single large kernel
convolutional layer.

In addition, to furthermore describe the differences
between the center pixel and the surrounding ones, we pro-
pose to add 1 × 1 convolution layers. It indeed increases
the non-linearity of the decision function without interfering

FIGURE 4. Stacked convolutional layers have a large receptive field. The
example shows an image passing through two convolutional layers with
3× 3 kernel size (or filter size) and applied with a stride of 2. After two
3× 3 convolutional layers, the receptive field expands to 5× 5. (a)
Affected area at the first step of the first convolutional layer; (b) affected
area of the second step; (c) affected area of the first convolutional layer;
(d) affected area (blue region) and receptive field of the second
convolutional layer (red region).

the receptive field of the convolutional layer. To our knowl-
edge, Visual Geometry Group (VGG) [38] investigates the
performance of 3 × 3 convolution filters, which shows that
a significant improvement can be achieved by using 3 × 3
convolution filters, and deepen the neural network.

IV. NUMERICAL EXPERIMENTS
To demonstrate the effectiveness of our proposed method,
we give numerical results: 1) we empirically demonstrate
the performance of the proposed robust multi-classifier with
CNN, and in comparison with current arts; 2) we evaluate the
robustness of the proposed algorithm, with considering some
practical attacks such as JPEG compression, noising adding,
and image re-scaling.

To establish a comprehensive dataset for testing, we con-
sider to use the Dresden image dataset [39], which are
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TABLE 2. Experimental dataset serves for the results of Fig. 5. For each
model, we randomly choose 150 images for testing dataset, 150 images
for training dataset.

all JPEG format with quality factors (QF) over 75. That
benchmark dataset is also widely-utilized by other foren-
sic investigators for addressing the problem of SCI such as
[32] and [40]. The dataset contains overall 27 cameramodels,
and for some camera models, it contains multiple instances,
consisting of a total of 74 camera instances. Table 2 and 3
respectively illustrate the camera statistic of the dataset. Due
to limited data of Dresden image dataset, let us evaluate our
proposed multi-classifier using 150 images for training and
150 images for testing camera model with multi-instances
(see Table 2). Nevertheless, we believe that our proposed
algorithm can still perform well over a large scale of dataset.

Afterwards, let us establish our experimental environ-
ment. All models run on a single Nvidia GPU card of type
GeForce GTX 1070, with its built-in Deep Learning Tensor-
flow 1.4 module (see [41] for details).

A. DETECTION PERFORMANCE OF CNN-BASED
MULTI-CLASSIFIER
This section includes two experiments: the first experiment
is designed to overall evaluate the detection performance of
our proposed CNN-based multi-classifier for a single patch;
the second one aims at validating the voting module perfor-
mance of the multi-classifier. Meanwhile, we give the com-
parative results with other well-performed classifiers, such
that from [32] and [40] (see Fig. 7). Because both of them are
established based on machine leaning mechanism, and have
achieved a high detection probability over 93%. In addition,
it is proposed to analyze the limitations of two prior arts.

The algorithm of [40] extracts feature mainly relying on
a rich model with describing a camera’s demosaicing pat-
tern. All the extracted features representing a labeled image
acquired by a source camera model are trained for classi-
fication. In fact, the classifier of [40] has made remarkable

TABLE 3. Experimental dataset serves for the results of Fig. 6. For each
model, we randomly choose 100 images for testing dataset, others for
training dataset.

results, however, there still exist some limitations: the over-
complex model used for feature extraction leads to relevant
less efficient computation, especially dealing with a large
full-size image. Besides, the problem of selecting effective
hand-crated features remains open. To challenge that lim-
itation, the algorithm of [32] uses CNN model to extract
image features, and adopts a binary classifier based on SVM
for solving the problem of SCI. Since the SVM is used to
design a binary classification, computational complexity of
classifiers with multi-SVM increases toO

(
n2
)
. Furthermore,

due to the separation between the feature extractor and the
binary classifier, the system needs a large number of images
for training the model.

We randomly select 25 camera models from Dresden
image dataset, including more than 6000 images which are all
natural JPEG compressed images (see Table 3). It should be
noted the 18 cameramodels contain at least two instances (see
Table 2). In particular, all images acquired by each camera
model are split into two datasets, of which 100 for testing and
the rest for training. Compared to the used number of training
data from the method of [32], our proposed classifier uses
less than two-third of the training data. Still, our algorithm
demonstrates its efficient relevance with using less training
samples.

In the procedure of training, we set C = 75 (see Fig. 2),
referring to cropped patches from 75% (the central portion)
of each image. Then K = 256 non-overlapping patches are
extracted, where each patch size is 64 × 64 and containing
nearly one million patches in total (3887× 256. see Table 3).
Firstly, we evaluate the accuracy of the proposed method in

classifying image patches (without voting). Fig. 5 illustrates
the confusion matrix (consisting of probabilities) of detection
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FIGURE 5. Confusion matrix for 20 camera models from Table 2 using the
proposed method. Results are obtained with a single patch per image.
Each cell reports the percentage of images from target class assigned to
output class.

perform using our proposed multi-classifier. In a confusion
matrix, each row of the matrix represents the cameral model
in a predicted label while each column (the output label)
represents the one in an correct class. It should be noted
that the correct rate (referring to as the probabilities along
the main diagonal) is defined as the the predicted label
is correctly classified as the output label. By observation,
the average of the correct rate of our proposedmulti-classifier
is over 90%, which is slightly higher than that proposed by
[32] or [40]. Besides, it should be noted that our proposed
multi-classifier cannot distinguish between Nikon D70 and
D70s. In fact, the settings of the twinborn models are very
similar. By referring to [39], two identical lenses are used
for the two digital cameras, Nikon D70 and D70s. Moreover,
lenses can be interchanged for each acquired image between
two (out of four) camera bodies. Thus, it is very difficult for
us to distinguish them. However, we still try to deal with
that problem in an alternative way. Let us classify the images
acquired by D70 or D70s as the same source camera model,
named asD70_70s in the first classification. Then, in the sec-
ond classification, it is proposed to use the binary classifier
of [24], which has the ability of distinguishing betweenNikon
D70 and D70s.

Furthermore, it is proposed to verify the effective-
ness of our multi-classifier in the larger dataset with

FIGURE 6. Confusion matrix for 25 camera models from Table 3 using the
proposed method. Results are obtained with a single patch per image.
Each cell reports the percentage of images from target class assigned to
output class.

25 camera models in Table 3. In this case, each model has
one instance for testing. As Fig. 6 illustrates, the proposed
multi-classifier remain its correct rate deal with distinguish-
ing different cameramodels. It should be noted that the model
DSC-T77 and DSC-W170 can be effectively discriminated
while our designed classifier with 20 models (see Fig. 6)
and the classifier of [32] cannot do that. More importantly,
our modified CNN model has a strong ability to characterize
camera models in a space with reduced dimensionality.

After validating the good performance on a single patch,
we focus on the evaluation of the entire classification (with
majority voting) in comparison with state-of-the-art methods.
Fig. 7 shows the average classification accuracy for dataset
in Table 2, where the average accuracy is defined as:

Accuracyv =
1
N
×

N∑
l=1

yl,v

where N denotes the number of given known camera models,
yl,v is average accuracy for label l with the number of patches
v, v ∈ {1, . . . , 32}. As Fig. 7 illustrates, Our proposed
multi-classifier is depicted by the blue line whose average
accuracy gradually converges after the number of patches
v = 10. The average accuracy is gradually enhanced (nearly
close to 100% when v = 32) with the increment of voting
number. Meanwhile, in comparison with the algorithms of
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FIGURE 7. Accuracy comparison by varying the number of patches voting
for each image of 20 camera models from Table 2.

TABLE 4. Experimental datasets. For each model, we randomly choose
80 images for testing dataset, others for training dataset, one device for
each model.

Chen and Stamm [40] and of Bondi et al. [32], it’s obvious
that our designed multi-classifier can achieve better accuracy.
Both two experimental results highlight that our algorithm
slightly outperforms current arts, not only on the accuracy
but also on the complexity of the algorithm.

B. ROBUSTNESS OF OUR PROPOSED METHOD
Since JPEG format has been widely adopted on social net-
work platforms where the fingerprints of the images can
be probably contaminated, it demands on the research of
robustness of SCI algorithm.

In order to verify the robustness of our proposed algorithm,
we still select images from Dresden dataset. Table 4 lists
the static of used camera models that undergo unpredictable
changes caused by content-preserving manipulations or geo-
metric distortions, such as JEPG compression, adding noise
and re-scaling. During the training process, we use the train-
ing dataset from Table 4 to train our CNN model without
suffering any attacks. Then for the testing process, tested
images are first pre-processed using attacks as: JPEG com-
pression (case 1), or adding noise (case 2), or re-scaling
(case 3), and then classified by our algorithm. In the following
paragraphs, we will evaluate the robustness of our proposed
multi-classifier by considering three cases.

For case 1, let us evaluate the robustness of the multi-
classifier under JPEG compression attack with different QFs.
In the experiment, it is proposed to twice compress testing
images with QF, ranging from 70 to 90 by steps of 10 (see
Table 5). With decreasing QF, our multi-classifier remains its

TABLE 5. The results of the robustness for our multi-classifier under the
attack by JPEG compression.

FIGURE 8. Confusion matrix for our proposed multi-classifier under the
attack of JPEG compression with QF = 90.

high detection accuracy. Even when the QF is 80, the average
accuracy is still over 82%. In addition, Fig. 8 illustrates the
confusion matrix with JPEG compression with QF = 90.
For case 2, it is proposed to add Gaussian-distributed ran-

dom noise to tested images with different intensities, which
are: N1(0, 1), N2(0, 2), N3(1, 1), N4(1, 2) (For Ni(x, y),
where x denotes expectation, y denotes variance). From
Table 6, with increasing the intensity of adding noise, our
multi-classifier sill performs very well. We can observe that
the overall average accuracy reaches 86.22%, and the result
directly verifies that our proposed method has the ability
of achieving high accuracy, even with the interference of
Gaussian-distributed noise.

For case 3, we investigate the robustness of the proposed
algorithm resisting against re-scaling attack. Table 7 demon-
strates that in the case of re-scaling factor equal to 1.1, our
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TABLE 6. The results of the robustness for our multi-classifier under the
attack by adding Gaussian-distributed noise.

TABLE 7. The results of the robustness for our proposed method under
the attack of re-scaling.

multi-classifier can be effective when dealing with camera
model Agfa Sensor505-x and Nikon D200, but fail in classi-
fication of other models.

In practice, up-loading users’ images to website or trans-
mitting images to each other both can result to some hid-
den attacks such as compression and re-scaling by servers
of various social media platforms or noise adding by the
information channel. To our knowledge, however, few state-
of-the-art detectors consider the robustness dealing with the
problem of SCI. In this context, the numerical experiments
validate that our algorithm has power to resist against JPEG
compression or adding noise. Unfortunately, in the case of
re-scaling attack, our proposed multi-classifier can only be
effective when dealing with two cameral models. However,
it should be noted that few prior arts address the problem of
considering the re-scaling attack.

V. CONCLUSIONS
In this paper we investigate a robust multi-classifier based
on CNN model. Unlike current arts with binary classifica-
tion algorithm, our proposed classifier can identify multi-
ple camera models in one comparison, with high detection
accuracy and strong robustness. Specifically, we focus on
strategies for pre-processing images (patch selection), and
designing a neural network architecture. Numerical experi-
ments show that our proposed method can classify camera
model accurately with one camera instance (see Fig. 6).
However, when dealingwith the case of NikonD70/D70s, our
multi-classifier cannot perform very well. Meanwhile, for the
dataset (see Table 2) with more than one camera instance, our
detector can effectively classify camera model except Sony
DSC-T77 /DSC-W170 and Nikon D70/D70s (see Fig. 5), and
achieve an average accuracy nearly 100% when considering
majority voting. Robustness experiments validate that our
algorithm can resist against JPEG compression or adding

noise. Unfortunately, it might be invalid when suffering re-
scaling attacks. In future work, we will extend our algorithm
to user identity identification using images shared on social
network.
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