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Abstract-Code obfuscation plays a significant role in 

metamorphic malware. Moreover, identifying a metamorphic 

malware variant is a challenge task, because its obfuscation 

engine can easily generate various variants with different 

forms while maintaining the same functionality to escape 

detection. This paper presents a novel approach to recognize 

metamorphic malware based on programs' function-call 

graphs. Graph-coloring and cosine similarity techniques are 

used to measure the similarity of two programs on the basis of 

function-call graph. Experimental results have shown that the 

proposed method can accurately detect the metamorphic 

malware variants. 
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I. INTRODUCTION 

The terminology "malicious software (mal ware )" refers 
to different kinds of software which intend to carry out 
malicious tasks on computer system. The typical malware 
include virus, worms, spyware, and trojans ect. It will 
engender an enormous loss to person even if the society. 

Nowadays the number of mal ware increases 
dramatically, especially, code obfuscation techniques 
aggravate this phenomenon. According to the "Message 
Labs Intelligence: 20lO Annual Security Report" [1] of 
Symantec, in 20lO, there were over 339,600 different 
malware strains identified in emails blocked, representing 
over a hundredfold increase compared with 2009. This is 
largely due to the growth of polymorphic and metamorphic 
malware variants, typically generated from toolkits that 
allow a new version of the code to be generated quickly and 
easily. Effective antivirus techniques should be proposed to 
detect the obfuscated malware and mitigate the damages 
caused by malware. 

In order to evade the detection of antivirus products, 
malware writers have to improve their skills in malware 
writing. Obfuscation is to obscure the information such that 
others cannot fmd the true meaning. Malware writers use 
this technique to obfuscate malicious code so that it is 
difficult to reverse-engineer, and then its malicious content 
cannot be detected. Obfuscation can easily change the 
structures of malware and keep the programs' semantics 
and functionality invariant. A lot of obfuscation engines 
were designed by malware authors in the past few years, 
such as Mistfall, Win32/Simile, and RPME [2]. Therefore, 
metamorphic malware will go into mass production easily. 
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However traditional methods for malware detection are 
mostly based on malware signature. It uses syntactic 
information as a signature rather than semantic information. 
Now, more and more researchers are paying attention to 
semantic signatures to detect malware. This paper is an 
improvement of [3], which proposed a method to detect 
malware variants based on function-call graph. Function­
call graph can describe a program's function. It is effective 
to detect malware variants using this graph. In this paper we 
propose a new method to match functions instead of LCS 
(Longest Common Subsequence) using in [3]. For 
obfuscation, our method performs more robust. 

The rest of this paper is organized as follows. Section 2 
review related works. In section 3, we detail our analytical 

�pproach and steps. Section 4 evaluates our techniques and 
m Section 5, limitations and future works are pointed out. 
We conclude in Section 6. 

II. RELATED WORKS 

Malware detection is a hot field as the development of 
computer and internet. Many predecessors have done a lot 
of research in this field. However, as obfuscation 
techniques continuously evolved. It leads to some 
signature-based detection approaches useless. 

In order to make obfuscation detection more reliable, a 
great number of means have been proposed in the passed 
several years. Mihai Christodorescu et al. [8] defined a 
dependence graph as a malware's signature and proposed a 
mining algorithm to construct the graph by use of dynamic 
analysis. Jianli et al. [9] extract maximal pattern sequence 
from system call sequence, and use this pattern as a feature 
to compute similarity among malwares. 

Th� papers discussed above are all based on dynamic 
analYSIS. There are also some solutions for metamorphic 
malware detection using static analysis. Gheorghescu [lO] 
generates a CFG (control flow graph) by traversing the code 
of a program and uses this graph as its characteristic. Kapoor 
and Spurlock [11] argue that comparing mal ware on the 
basis of functionality is more effective than binary code 
comparison. R. Tian and L.M. Batten et al. [12] use some 
mathematics methods such as Chi-square test to classify 
malware based on functions' length, the functions are 
obtained by IDA pro [6]. Abhishek Karnik et al. [7] use 
cosine similarity to compute similarities among functions of 
two malware, consequently, the similarity of two malwares 



can be obtained. But a drawback of this method is that such 
a scheme could be subverted by the use of methods such as 
the instruction substitution method or using a dictionary of 
similar instructions. Also, on the field of static analysis, 
some researchers focus on library or system functions which 
are called. Qinghua Zhang, Douglas S. Reeves [13] exactly 
make use of library or system functions as patterns for 
detection. This approach makes a backwards data flow 
analysis to a program, and use the intermediate 
representation of semantic instructions to obtain malware's 
pattern. System-call graph is obtained using the algorithm 
proposed by [14] and use this graph to detect or classify 
malicious programs. Jusuk Lee [15] improve the method of 
[14] by classifying API calls into 128 groups, and make the 
graph to be more fast simple analysis. This method ignores 
the information of local functions, thus, it may cause higher 
false positive. Also, it may suffer the code obfuscation 
techniques such as insertion of meaningless system calls. 

III. FUNCTION-CALL GRAPH SYSTEM 

To realize our idea, the design of the whole system is 
divided into three steps. 

a) Generate function-call graph using assembly code. 

b) Match each vertex in the graph. 

c) Compute similarity of two graphs. 
Before creating the function-call graph, we should make 

sure that the malware problem can be disassembled 
accurately. Tools such as PEiD [4] and UPX [5] are used to 
unpack the program. 

A. Function-call Graph Definition 

Function-call graph is graph of a program's binary code. 
It describes the functions' relationship of a program and is 
consist of a set of vertices and a set of edges between 
vertices. Assembly code can be obtained from IDA pro [6]. 
A function-call graph is written G = (V, E, jJ., w), where: 
V is vertex-set. Each vertex is corresponding to a unique 
function in the program; 
E is edge-set, E <;;; V x V ; 

jJ. is a labeling function to label the vertices, Vv E V , 

::3ll(V) E Lv, where Lv denotes a set of vertex attributes; 

W is a weighting function to compute the edges' weights and 
the vertices' indegrees and outdegrees. 
Specifically, functions (vertices) are classified into three 
categories: Dynamically-Imported functions, Statically­
Linked library functions and the Local-Subroutines. 

B. Function-call Graph Generation 

For generating the function-call graph, the algorithm 
adopts a breadth-first approach to build the function-call 
graph, and the graph is stored into an orthogonal list. It 
builds the caller-callee relationship starting from the entry 
point functions. It traverses each function's instructions to 
find all the subroutines called by the function. The graph 
will be constructed when all the functions are processed. 
Details about how to build the function-call graph can be 
seen in [3]. 

C. Function-matching 

Semantically, if two malware perform the same 
functionality, the vertices in both graphs are connected in 
the same way. Grounded on this assumption, it is necessary 
for us to match each vertex between two graphs. We call 
this matching process as function-matching. It ends when 
we fmd all the common vertices. 

Function-matching is divided into two parts. First, we 
match vertices of two programs using the feature of 
function-call graph's structure and ignore the inner 
information of the function (this part has been discussed in 
[3], we will not introduce it in this paper). Second, the 
functions' internal information should be used. The detail of 
this part is described below. 

There are still many vertices haven't been thought over 
after the first part of matching algorithm. We realize the 
function of the second part through 2 steps. In the first step, 
preprocessing the unmatched vertices (functions) using the 
technique of graph coloring. In the second step, similarity 
algorithms are used to calculate the similarity based on the 
vertices (functions) which have the same color through the 
first step. In this paper, we use cosine similarity to calculate 
the similarity. 

Step 1, in this step, we mark a color for each vertex in 
the light of functionality of every instruction. We classify 
the X86 instructions into 15 classes according to their 
functions as shown in TABLE I .  15 bit color values are 
defmed to describe a fmgerprint for each vertex and 
initialize these values to O. Each bit corresponds to a certain 
class of instructions. We traverse every instruction of a 
function and map it to the class. If one or more instructions 
appear in the class, set the corresponding bit to 1, at the 
same time, the number of instructions belongs to a certain 
class should be added up for the calculating of the second 
step. When we fmished traversing the instructions of a 
function, we get a color (fmgerprint) of corresponding 
vertex. The pair of vertices which have the same color are 
selected to compute similarity in succeeding step. The graph 
coloring technique can cope with certain instruction 
substitution obfuscation such as replace instructions with 
other function-similarity ones, since the function-similarity 
instructions have been classified to the same class. 

TABLE I. Color classes 

class Description class Description 
data such as mov jump unconditional 

transfer instruction transfer 
stack stack operation branch conditional transfer 
port in and out loop loop control 
lea destination halt stop instruction 

address transmit execution 
flag flag transmit bit bit test and bit scan 

arithmetic incl. shift and processor processor control 
rotate 

logic incl. bit/byte float Floating point 
operations operations 

string string operations 

Step 2, cosme slmIianty WIll be used on the baSIS of step 
1, which have calculated the frequency of each color class. 



Specifically, there are 15 classes. Vectors which have 15 
dimensions are used as parameters for cosine similarity. 
Every dimension in the vector represents the number of 
instructions occur in corresponding class. Given two 
vectors X and Y, X = (xl, x2, ... , xn), and Y = (yl, y2, ... , 
yn). e means the angle of the two vectors. Then, the cosine 
similarity of is calculated through the following formula: 

cos(B) = ('Lx;, Y;)/ XL x; . 'L,l) 
(1) 

This is an example of how to calculate the similarity 
between two functions. TABLE II shows two sequences of 
instructions. According to these sequences, statistics the 
number of every certain class and corresponding vectors are 
obtained in TABLE III. Then, formula (1) comes on the 
stage. Thus, the similarity score between A and B is 0.797. 

TABLE II. Two sequences of instructions as an example 

Sequence A Sequence B 
push push 
mov push 
mov push 
mov mov 
xor mov 
add xor 
test xor 
jz mov 
test cmp 
jz jz 

mov call 
push pop 
call pop 

pop 

TABLE III. Vectors obtained from each sequence of Table 2 

Class data transfer stack logic branch jump arithmetic 
(vector) 
Num A 4 2 3 2 1 1 
Num B 3 6 2 1 1 1 

Up to now, we have mtroduced every smgle step of our 
algorithm. Next, we will match the exact vertices using the 
proposed method on the whole scale. Pseudo-code for our 
matching algorithm is given in Algorithm 1. 

In Algorithm 1, vertices in two graph Gl and G2 are 
chose. The color of each vertex are got from 1 to 5 using 
GetFingerprintO. From 6 to 8, vectors as mentioned 
previously are computed using Get VectorO for vertices 
which have the same color. cosine _similarityO in 9 is a 
function which calculate similarity using cosine similarity. 
For each unmatched vertex in Gl, every vertex in G2 will be 
traversed for matching. It is very likely that a color of a 
certain vertex will match more than one vertex in another 
graph. As we know, when one vertex in G 1 tries to find a 
matching vertex in G2, there are only two consequences, one 
matching vertex in G2 or not. For fmding the right matching 
vertex in G2, pseudo-code from 10 to 22 is shown to realize 
this function. maxSim in 11 is defmed as the maximal 
similarity from the vertex pairs which have the same color. 
From 17, we can see that if the maximal similarity is greater 
than a designated threshold , (, = 0.85 is chosen empirically) 
in advance, then the corresponding vertex j in G2 is the 

match for vertex i in Gl and add this vertex pair into the 
match_set. The program ends when we finished traversing 
all the unmatched vertices left from step 1. 

For each unmatched vertices (functions) in graph GI and G2 do the 
following: 
Input: sequences of instructions of every function u[il and v[j] 
Output: a set of matched functions { . . .  , (x,y), . . .  } 
1 foreach u[il E U do 
2 maxSimf-O; 
3 G I .color[ilf-GetFingerprint(u[i]); 
4 foreach v [j] E V do 
5 G2.color[j]f-GetFingerprint(vU]); 
6 if G I.color[i] is equal to G2.color[j] do 
7 G I. vector[i] f-GetVector( uri]); 
8 G2. vectorU] f-GetVector(vU]); 
9 Similarity f-cosine _similarity(G I. vector[i],G2. vectorU]); 
IO if Similarity > maxSim then 
I I maxSimf-Similarity; 
12 xf-i; 
13 yf-j; 
14 else goto 4 
15 else goto 4 
16 end for 
I7 if maxSim > T then 
18 match_setf-match_set U (x,y); 
19 Uf-U-u[xl; 
20 Vf-V-v[y]; 
21 return match_set; 
22 else goto I 
23 end for 

Algorithm I 

D. Similarity lndex Definition 

Gl G2 

Figrue 1. An example for computing similarity 

The function-matching has fmished. Next job is to 
compute the similarity score between two graphs. As we 
seen in Figure 1, Gl is different from G2, but if we only 
consider vertex's information of two graphs, the similarity 
of Gl and G2 would be lOO%. To measure the similarity 
more precisely, edge's information should be considered, 
because edges are able to represent characteristic of graph 
than vertices. Then, we defme the similarity sim of graph 
Gl and G2 as follows. 

2xIE(GlnG2)1 sim(GI,G2) 
= (IE(GI)I +IE(G2)1) 

It means the ratio of the same edges of two graphs. In 
this formula, IE(Gl n G2)1 represents the number of the 
same edges of graph Gl and G2. �E(Gl)I+IE(G2W 
represents the total number of edges of graph Gl and G2. 



Obviously, for any GJ and G2, sim(GJ, G2)E{O, J]. 
sim(GJ, G2) is more closer to 1 means they are more similar. 
According to Figure 1, GJ has 3 edges and G2 has 4 edges. 
And the number of the same edges of GJ and G2 is 3, the 
total number of edges is 7. Thus, the similarity of G J and G2 
is 2*317, 0.857l. 

IV. EVALUATION 

To inspect the effectiveness and correctness of our idea, 
we performed a series of experiments with the prototype 
system. Numerous sets of malware mutants were 
downloaded from VX Heavens [16]. At the same time, some 
benign programs were also collected for our experiments. In 
the fIrst experiment, a great number of metamorphic 
malwares were chosen as examples to calculate similarities 
among them. The second experiment attempts to show the 
performance of classifIcation among different malware 
families. In order to evaluate the capability of our algorithm 
to distinguish malicious programs from benign programs, 
the third experiment will be done. 

A. Variant Similarity Evaluation 

2% 

58% 

00.8-1 

00.6-0.8 

00.4-0.6 

• O. 2-0. 4 

Figrue 2. Similarity statistics of mal ware variants pairs belong to the 
same family 

More than 200 pairs of variants which can be unpacked 
and disassembled correctly were collected. Size of these 
malware programs ranges from 8K to 1M bytes. We 
compute the similarity score of every malware pair that 
perform the similar or same task. The result, according to 
our statistics, is shown in Figure 2. The percentage of pairs 
which have the similarity score from 0.4 to 1 is about 98%. 
Hence, we can recognize obfuscated malware easily. Here, 
about 2 % pairs have a similarity score ranges from 0.2 to 
0.4. This is because sizes of a malware and its variants are 
largely different, thus, makes the number of edges has a 
great difference. Obviously, similarity score will diminish 
using our formula in this condition. For example, size of 
Backdoor.Win32.DarkMoon.j and Backdoor.Win32.Dar­
kMoon.m are 84.8KB and 58.5KB respectively, 
corresponding, the number of their edge are 1031 and 676 
respectively. The similarity score is 0.207. 

B. Malware Classification 

In the fIrst experiment, whether variants belong to the 
same malware family has been determined. In this section, 
we will evaluate the performance of malware classifIcation. 
The malware samples listed in TABLE IV are used for this 
evaluation. The left part (malware belong to the same 
family) is corresponding to the higher scores in Figure 3. In 

the same way, samples of the right part are corresponding to 
the lower scores. In Figure 3, x-axis means the malware 
pairs and y-axis shows the similarity score. According to 
this fIgure, malware classifIcation is not a confused job. 
Similarity scores of different families always less than 0.1 
even more close to O. The similarity value 0.l761 between 
Trojan-IM.Win32.Agent.j and Virus.Win32.BHO.a seems a 
little high, this is because a common code base may be used 
even they are in different families. 

TABLE IV. 

Malwares belong to the same 
family 

Email-Worm. Win32.Mimail.a 
Email-Worm. Win32.Mimail.c 
Email-Worm. W in32.Mimail.e 
Email-Worm. W in32.Mimail. f 
Email-Worm. W in32.Mimail.g  
Email-Worm. W in32.Mimail.j 
Email-Worm.Win32.Mimail.k 
Email-Worm. Win32.Mimail.l 
Email-Worm. Win32.Mimail.m 
Email-Worm. W in32.Mimail.o 
Email-Worm.Win32.Mimail.p 
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Hybrid malicious samples 

Malwares of different families 

Backdoor. Win32.Adbreak 
Backdoor. Win32.DarkMoon.ai 
Email-Worm. Win32.Klez.f 
Email-Worm. Win32.Mimail.f 
Email-Worm.Win32.NetSky.z 
Rootkit. W in32. Vanti 
Trojan-1M. Win32.Agent.j 
Trojan-Spy. Win32.AdvancedKeyLo-
gger17 
Virus.Win32.BHO.a 
Virus.Win32.Sality.a 
Worm.Win32.QQPass.o 

flO 

Figrue 3. Similarity scores of hybrid malicious samples 

C. Evaluation Together With Benign Programs 

Evaluation within malicious programs has been done. To 
appraise the availability of our idea, we implement our 
prototype and apply it to a set of malicious and benign 
programs. Samples are listed on TABLE V. Similarity 
scores are shown in Figure 4. In this graph, x-axis and y-axis 
represent malicious samples, and the z-axis means the 
similarity value. Pairs which have the same function can be 
distinguished easily (pairs like kido.ih and kido.dam.x, 1E7 
and 1E8, sality.d and sality.e have similarity scores 1, 0.82 
and 0.51 respectively). All of the scores that benign 
programs compared to any one of the malicious are very low 
(most of them are blow 0.1 and more close to 0). Only the 
similarity score (more than O.l) of lsass.exe and pid.dll 
seems a little abrupt. This is because both of them are 
consisted of system functions primarily and the same system 
call accounts for a signifIcant proportion in these two 
programs. However, we match system functions just depend 
on their function name. If they have the same name, they are 
regarded as a match. 



TABLE V. Benign and malicious samples 

Benign Malicious 
ipv6.exe Trojan. Win32.AVKill.a. 
Isass.exe Trojan. W in32.ICQPager.b 
netstat.exe. Worm.Win32.Bagle.i 
cdm.dll Virus. W in32.Evol.a 
pid.dll Worm.Win32.Kido.ih 
md5sum.exe Worm. Win32.Kido.dam.x 
puttyO.60 Worm. Win32.Mimail.c 
Firefox3 .6.3 Virus.Win32.Sality.d 
install _icq7.exe Virus.Win32.Sality.e 
IE7-WinXP-x86-chs.exe Virus. Win9x.lMorph.5200 
IE8-WinXP-x86-chs.exe Virus.Win32.Zmist 

Figrue 4. Similarities among benign and malicious samples 

V. LrMITAIONS 

This detection technique is based on static analysis, so 
the program must be disassembled before. A key point of 
disassemble is that the accuracy may not achieve to 100% 
[17]. Call instruction obfuscation, entry point obfuscation 
and implicit function-call can influence the detection rate 
since these techniques hinder the construction of function­
call graph. 

Our method on function-matching using graph coloring 
technique is invalid to some instruction substitution 
situations (one instruction is replaced by an instruction in 
another class). Such as sub ecx, ecx (which belong to the 
arithmetic class) is identified as equivalent to mov ecx, 0 
(which is a data transfer instruction). 

In the future, implicit function-call should be considered 
and also we will try to find another method to deal with the 
code obfuscation techniques that the idea can not manage in 
this paper. 

VI. CONCLUTION 

This paper proposed a new method to match each 
functions between two programs on the basis of their 
function-call graphs. 

The key idea of our method is to use graph-coloring 
technique together with statistical to complete the function­
matching. Graph-coloring is a pretreatment for statistical. 
The statistical process is to match vertices of two programs. 
In addition, edges' information is used to calculate the 
similar value. 

In the end, abundant wild malwares and benign 
applications were used as samples to inspect our idea. The 
result shows that malware variants can be well classified 
using the prototype in line with our method. 
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