
A Novel Malware Variants Detection Method Based On Function-call Graph

Lingfei Wu

Institute of Computer Application Technology
Hangzhou Dianzi University

Hangzhou, China, 3lO0l8
50fei@163.com

Abstract-Code obfuscation plays a significant role in

metamorphic malware. Moreover, identifying a metamorphic

malware variant is a challenge task, because its obfuscation

engine can easily generate various variants with different

forms while maintaining the same functionality to escape

detection. This paper presents a novel approach to recognize

metamorphic malware based on programs' function-call

graphs. Graph-coloring and cosine similarity techniques are

used to measure the similarity of two programs on the basis of

function-call graph. Experimental results have shown that the

proposed method can accurately detect the metamorphic

malware variants.

Keywords-rnalware; graph-coloring; Junction-matching

I. INTRODUCTION

The terminology "malicious software (mal ware)" refers
to different kinds of software which intend to carry out
malicious tasks on computer system. The typical malware
include virus, worms, spyware, and trojans ect. It will
engender an enormous loss to person even if the society.

Nowadays the number of mal ware increases
dramatically, especially, code obfuscation techniques
aggravate this phenomenon. According to the "Message
Labs Intelligence: 20lO Annual Security Report" [1] of
Symantec, in 20lO, there were over 339,600 different
malware strains identified in emails blocked, representing
over a hundredfold increase compared with 2009. This is
largely due to the growth of polymorphic and metamorphic
malware variants, typically generated from toolkits that
allow a new version of the code to be generated quickly and
easily. Effective antivirus techniques should be proposed to
detect the obfuscated malware and mitigate the damages
caused by malware.

In order to evade the detection of antivirus products,
malware writers have to improve their skills in malware
writing. Obfuscation is to obscure the information such that
others cannot fmd the true meaning. Malware writers use
this technique to obfuscate malicious code so that it is
difficult to reverse-engineer, and then its malicious content
cannot be detected. Obfuscation can easily change the
structures of malware and keep the programs' semantics
and functionality invariant. A lot of obfuscation engines
were designed by malware authors in the past few years,
such as Mistfall, Win32/Simile, and RPME [2]. Therefore,
metamorphic malware will go into mass production easily.

Ming Xu Jian Xu Ning Zheng Haiping Zhang

Institute of Computer Application Technology
Hangzhou Dianzi University

Hangzhou, China, 310018
mxu@hdu.edu.cn

However traditional methods for malware detection are
mostly based on malware signature. It uses syntactic
information as a signature rather than semantic information.
Now, more and more researchers are paying attention to
semantic signatures to detect malware. This paper is an
improvement of [3], which proposed a method to detect
malware variants based on function-call graph. Function
call graph can describe a program's function. It is effective
to detect malware variants using this graph. In this paper we
propose a new method to match functions instead of LCS
(Longest Common Subsequence) using in [3]. For
obfuscation, our method performs more robust.

The rest of this paper is organized as follows. Section 2
review related works. In section 3, we detail our analytical

�pproach and steps. Section 4 evaluates our techniques and
m Section 5, limitations and future works are pointed out.
We conclude in Section 6.

II. RELATED WORKS

Malware detection is a hot field as the development of
computer and internet. Many predecessors have done a lot
of research in this field. However, as obfuscation
techniques continuously evolved. It leads to some
signature-based detection approaches useless.

In order to make obfuscation detection more reliable, a
great number of means have been proposed in the passed
several years. Mihai Christodorescu et al. [8] defined a
dependence graph as a malware's signature and proposed a
mining algorithm to construct the graph by use of dynamic
analysis. Jianli et al. [9] extract maximal pattern sequence
from system call sequence, and use this pattern as a feature
to compute similarity among malwares.

Th� papers discussed above are all based on dynamic
analYSIS. There are also some solutions for metamorphic
malware detection using static analysis. Gheorghescu [lO]
generates a CFG (control flow graph) by traversing the code
of a program and uses this graph as its characteristic. Kapoor
and Spurlock [11] argue that comparing mal ware on the
basis of functionality is more effective than binary code
comparison. R. Tian and L.M. Batten et al. [12] use some
mathematics methods such as Chi-square test to classify
malware based on functions' length, the functions are
obtained by IDA pro [6]. Abhishek Karnik et al. [7] use
cosine similarity to compute similarities among functions of
two malware, consequently, the similarity of two malwares

can be obtained. But a drawback of this method is that such
a scheme could be subverted by the use of methods such as
the instruction substitution method or using a dictionary of
similar instructions. Also, on the field of static analysis,
some researchers focus on library or system functions which
are called. Qinghua Zhang, Douglas S. Reeves [13] exactly
make use of library or system functions as patterns for
detection. This approach makes a backwards data flow
analysis to a program, and use the intermediate
representation of semantic instructions to obtain malware's
pattern. System-call graph is obtained using the algorithm
proposed by [14] and use this graph to detect or classify
malicious programs. Jusuk Lee [15] improve the method of
[14] by classifying API calls into 128 groups, and make the
graph to be more fast simple analysis. This method ignores
the information of local functions, thus, it may cause higher
false positive. Also, it may suffer the code obfuscation
techniques such as insertion of meaningless system calls.

III. FUNCTION-CALL GRAPH SYSTEM

To realize our idea, the design of the whole system is
divided into three steps.

a) Generate function-call graph using assembly code.

b) Match each vertex in the graph.

c) Compute similarity of two graphs.
Before creating the function-call graph, we should make

sure that the malware problem can be disassembled
accurately. Tools such as PEiD [4] and UPX [5] are used to
unpack the program.

A. Function-call Graph Definition

Function-call graph is graph of a program's binary code.
It describes the functions' relationship of a program and is
consist of a set of vertices and a set of edges between
vertices. Assembly code can be obtained from IDA pro [6].
A function-call graph is written G = (V, E, jJ., w), where:
V is vertex-set. Each vertex is corresponding to a unique
function in the program;
E is edge-set, E <;;; V x V ;

jJ. is a labeling function to label the vertices, Vv E V ,

::3ll(V) E Lv, where Lv denotes a set of vertex attributes;

W is a weighting function to compute the edges' weights and
the vertices' indegrees and outdegrees.
Specifically, functions (vertices) are classified into three
categories: Dynamically-Imported functions, Statically
Linked library functions and the Local-Subroutines.

B. Function-call Graph Generation

For generating the function-call graph, the algorithm
adopts a breadth-first approach to build the function-call
graph, and the graph is stored into an orthogonal list. It
builds the caller-callee relationship starting from the entry
point functions. It traverses each function's instructions to
find all the subroutines called by the function. The graph
will be constructed when all the functions are processed.
Details about how to build the function-call graph can be
seen in [3].

C. Function-matching

Semantically, if two malware perform the same
functionality, the vertices in both graphs are connected in
the same way. Grounded on this assumption, it is necessary
for us to match each vertex between two graphs. We call
this matching process as function-matching. It ends when
we fmd all the common vertices.

Function-matching is divided into two parts. First, we
match vertices of two programs using the feature of
function-call graph's structure and ignore the inner
information of the function (this part has been discussed in
[3], we will not introduce it in this paper). Second, the
functions' internal information should be used. The detail of
this part is described below.

There are still many vertices haven't been thought over
after the first part of matching algorithm. We realize the
function of the second part through 2 steps. In the first step,
preprocessing the unmatched vertices (functions) using the
technique of graph coloring. In the second step, similarity
algorithms are used to calculate the similarity based on the
vertices (functions) which have the same color through the
first step. In this paper, we use cosine similarity to calculate
the similarity.

Step 1, in this step, we mark a color for each vertex in
the light of functionality of every instruction. We classify
the X86 instructions into 15 classes according to their
functions as shown in TABLE I . 15 bit color values are
defmed to describe a fmgerprint for each vertex and
initialize these values to O. Each bit corresponds to a certain
class of instructions. We traverse every instruction of a
function and map it to the class. If one or more instructions
appear in the class, set the corresponding bit to 1, at the
same time, the number of instructions belongs to a certain
class should be added up for the calculating of the second
step. When we fmished traversing the instructions of a
function, we get a color (fmgerprint) of corresponding
vertex. The pair of vertices which have the same color are
selected to compute similarity in succeeding step. The graph
coloring technique can cope with certain instruction
substitution obfuscation such as replace instructions with
other function-similarity ones, since the function-similarity
instructions have been classified to the same class.

TABLE I. Color classes

class Description class Description
data such as mov jump unconditional

transfer instruction transfer
stack stack operation branch conditional transfer
port in and out loop loop control
lea destination halt stop instruction

address transmit execution
flag flag transmit bit bit test and bit scan

arithmetic incl. shift and processor processor control
rotate

logic incl. bit/byte float Floating point
operations operations

string string operations

Step 2, cosme slmIianty WIll be used on the baSIS of step
1, which have calculated the frequency of each color class.

Specifically, there are 15 classes. Vectors which have 15
dimensions are used as parameters for cosine similarity.
Every dimension in the vector represents the number of
instructions occur in corresponding class. Given two
vectors X and Y, X = (xl, x2, ... , xn), and Y = (yl, y2, ... ,
yn). e means the angle of the two vectors. Then, the cosine
similarity of is calculated through the following formula:

cos(B) = ('Lx;, Y;)/ XL x; . 'L,l)
(1)

This is an example of how to calculate the similarity
between two functions. TABLE II shows two sequences of
instructions. According to these sequences, statistics the
number of every certain class and corresponding vectors are
obtained in TABLE III. Then, formula (1) comes on the
stage. Thus, the similarity score between A and B is 0.797.

TABLE II. Two sequences of instructions as an example

Sequence A Sequence B
push push
mov push
mov push
mov mov
xor mov
add xor
test xor
jz mov
test cmp
jz jz

mov call
push pop
call pop

pop

TABLE III. Vectors obtained from each sequence of Table 2

Class data transfer stack logic branch jump arithmetic
(vector)
Num A 4 2 3 2 1 1
Num B 3 6 2 1 1 1

Up to now, we have mtroduced every smgle step of our
algorithm. Next, we will match the exact vertices using the
proposed method on the whole scale. Pseudo-code for our
matching algorithm is given in Algorithm 1.

In Algorithm 1, vertices in two graph Gl and G2 are
chose. The color of each vertex are got from 1 to 5 using
GetFingerprintO. From 6 to 8, vectors as mentioned
previously are computed using Get VectorO for vertices
which have the same color. cosine _similarityO in 9 is a
function which calculate similarity using cosine similarity.
For each unmatched vertex in Gl, every vertex in G2 will be
traversed for matching. It is very likely that a color of a
certain vertex will match more than one vertex in another
graph. As we know, when one vertex in G 1 tries to find a
matching vertex in G2, there are only two consequences, one
matching vertex in G2 or not. For fmding the right matching
vertex in G2, pseudo-code from 10 to 22 is shown to realize
this function. maxSim in 11 is defmed as the maximal
similarity from the vertex pairs which have the same color.
From 17, we can see that if the maximal similarity is greater
than a designated threshold , (, = 0.85 is chosen empirically)
in advance, then the corresponding vertex j in G2 is the

match for vertex i in Gl and add this vertex pair into the
match_set. The program ends when we finished traversing
all the unmatched vertices left from step 1.

For each unmatched vertices (functions) in graph GI and G2 do the
following:
Input: sequences of instructions of every function u[il and v[j]
Output: a set of matched functions { . . . , (x,y), . . . }
1 foreach u[il E U do
2 maxSimf-O;
3 G I .color[ilf-GetFingerprint(u[i]);
4 foreach v [j] E V do
5 G2.color[j]f-GetFingerprint(vU]);
6 if G I.color[i] is equal to G2.color[j] do
7 G I. vector[i] f-GetVector(uri]);
8 G2. vectorU] f-GetVector(vU]);
9 Similarity f-cosine _similarity(G I. vector[i],G2. vectorU]);
IO if Similarity > maxSim then
I I maxSimf-Similarity;
12 xf-i;
13 yf-j;
14 else goto 4
15 else goto 4
16 end for
I7 if maxSim > T then
18 match_setf-match_set U (x,y);
19 Uf-U-u[xl;
20 Vf-V-v[y];
21 return match_set;
22 else goto I
23 end for

Algorithm I

D. Similarity lndex Definition

Gl G2

Figrue 1. An example for computing similarity

The function-matching has fmished. Next job is to
compute the similarity score between two graphs. As we
seen in Figure 1, Gl is different from G2, but if we only
consider vertex's information of two graphs, the similarity
of Gl and G2 would be lOO%. To measure the similarity
more precisely, edge's information should be considered,
because edges are able to represent characteristic of graph
than vertices. Then, we defme the similarity sim of graph
Gl and G2 as follows.

2xIE(GlnG2)1 sim(GI,G2)
= (IE(GI)I +IE(G2)1)

It means the ratio of the same edges of two graphs. In
this formula, IE(Gl n G2)1 represents the number of the
same edges of graph Gl and G2. �E(Gl)I+IE(G2W
represents the total number of edges of graph Gl and G2.

Obviously, for any GJ and G2, sim(GJ, G2)E{O, J].
sim(GJ, G2) is more closer to 1 means they are more similar.
According to Figure 1, GJ has 3 edges and G2 has 4 edges.
And the number of the same edges of GJ and G2 is 3, the
total number of edges is 7. Thus, the similarity of G J and G2
is 2*317, 0.857l.

IV. EVALUATION

To inspect the effectiveness and correctness of our idea,
we performed a series of experiments with the prototype
system. Numerous sets of malware mutants were
downloaded from VX Heavens [16]. At the same time, some
benign programs were also collected for our experiments. In
the fIrst experiment, a great number of metamorphic
malwares were chosen as examples to calculate similarities
among them. The second experiment attempts to show the
performance of classifIcation among different malware
families. In order to evaluate the capability of our algorithm
to distinguish malicious programs from benign programs,
the third experiment will be done.

A. Variant Similarity Evaluation

2%

58%

00.8-1

00.6-0.8

00.4-0.6

• O. 2-0. 4

Figrue 2. Similarity statistics of mal ware variants pairs belong to the
same family

More than 200 pairs of variants which can be unpacked
and disassembled correctly were collected. Size of these
malware programs ranges from 8K to 1M bytes. We
compute the similarity score of every malware pair that
perform the similar or same task. The result, according to
our statistics, is shown in Figure 2. The percentage of pairs
which have the similarity score from 0.4 to 1 is about 98%.
Hence, we can recognize obfuscated malware easily. Here,
about 2 % pairs have a similarity score ranges from 0.2 to
0.4. This is because sizes of a malware and its variants are
largely different, thus, makes the number of edges has a
great difference. Obviously, similarity score will diminish
using our formula in this condition. For example, size of
Backdoor.Win32.DarkMoon.j and Backdoor.Win32.Dar
kMoon.m are 84.8KB and 58.5KB respectively,
corresponding, the number of their edge are 1031 and 676
respectively. The similarity score is 0.207.

B. Malware Classification

In the fIrst experiment, whether variants belong to the
same malware family has been determined. In this section,
we will evaluate the performance of malware classifIcation.
The malware samples listed in TABLE IV are used for this
evaluation. The left part (malware belong to the same
family) is corresponding to the higher scores in Figure 3. In

the same way, samples of the right part are corresponding to
the lower scores. In Figure 3, x-axis means the malware
pairs and y-axis shows the similarity score. According to
this fIgure, malware classifIcation is not a confused job.
Similarity scores of different families always less than 0.1
even more close to O. The similarity value 0.l761 between
Trojan-IM.Win32.Agent.j and Virus.Win32.BHO.a seems a
little high, this is because a common code base may be used
even they are in different families.

TABLE IV.

Malwares belong to the same
family

Email-Worm. Win32.Mimail.a
Email-Worm. Win32.Mimail.c
Email-Worm. W in32.Mimail.e
Email-Worm. W in32.Mimail. f
Email-Worm. W in32.Mimail.g
Email-Worm. W in32.Mimail.j
Email-Worm.Win32.Mimail.k
Email-Worm. Win32.Mimail.l
Email-Worm. Win32.Mimail.m
Email-Worm. W in32.Mimail.o
Email-Worm.Win32.Mimail.p

••

(D
(D

.,

·0 10

Hybrid malicious samples

Malwares of different families

Backdoor. Win32.Adbreak
Backdoor. Win32.DarkMoon.ai
Email-Worm. Win32.Klez.f
Email-Worm. Win32.Mimail.f
Email-Worm.Win32.NetSky.z
Rootkit. W in32. Vanti
Trojan-1M. Win32.Agent.j
Trojan-Spy. Win32.AdvancedKeyLo-
gger17
Virus.Win32.BHO.a
Virus.Win32.Sality.a
Worm.Win32.QQPass.o

flO

Figrue 3. Similarity scores of hybrid malicious samples

C. Evaluation Together With Benign Programs

Evaluation within malicious programs has been done. To
appraise the availability of our idea, we implement our
prototype and apply it to a set of malicious and benign
programs. Samples are listed on TABLE V. Similarity
scores are shown in Figure 4. In this graph, x-axis and y-axis
represent malicious samples, and the z-axis means the
similarity value. Pairs which have the same function can be
distinguished easily (pairs like kido.ih and kido.dam.x, 1E7
and 1E8, sality.d and sality.e have similarity scores 1, 0.82
and 0.51 respectively). All of the scores that benign
programs compared to any one of the malicious are very low
(most of them are blow 0.1 and more close to 0). Only the
similarity score (more than O.l) of lsass.exe and pid.dll
seems a little abrupt. This is because both of them are
consisted of system functions primarily and the same system
call accounts for a signifIcant proportion in these two
programs. However, we match system functions just depend
on their function name. If they have the same name, they are
regarded as a match.

TABLE V. Benign and malicious samples

Benign Malicious
ipv6.exe Trojan. Win32.AVKill.a.
Isass.exe Trojan. W in32.ICQPager.b
netstat.exe. Worm.Win32.Bagle.i
cdm.dll Virus. W in32.Evol.a
pid.dll Worm.Win32.Kido.ih
md5sum.exe Worm. Win32.Kido.dam.x
puttyO.60 Worm. Win32.Mimail.c
Firefox3 .6.3 Virus.Win32.Sality.d
install _icq7.exe Virus.Win32.Sality.e
IE7-WinXP-x86-chs.exe Virus. Win9x.lMorph.5200
IE8-WinXP-x86-chs.exe Virus.Win32.Zmist

Figrue 4. Similarities among benign and malicious samples

V. LrMITAIONS

This detection technique is based on static analysis, so
the program must be disassembled before. A key point of
disassemble is that the accuracy may not achieve to 100%
[17]. Call instruction obfuscation, entry point obfuscation
and implicit function-call can influence the detection rate
since these techniques hinder the construction of function
call graph.

Our method on function-matching using graph coloring
technique is invalid to some instruction substitution
situations (one instruction is replaced by an instruction in
another class). Such as sub ecx, ecx (which belong to the
arithmetic class) is identified as equivalent to mov ecx, 0
(which is a data transfer instruction).

In the future, implicit function-call should be considered
and also we will try to find another method to deal with the
code obfuscation techniques that the idea can not manage in
this paper.

VI. CONCLUTION

This paper proposed a new method to match each
functions between two programs on the basis of their
function-call graphs.

The key idea of our method is to use graph-coloring
technique together with statistical to complete the function
matching. Graph-coloring is a pretreatment for statistical.
The statistical process is to match vertices of two programs.
In addition, edges' information is used to calculate the
similar value.

In the end, abundant wild malwares and benign
applications were used as samples to inspect our idea. The
result shows that malware variants can be well classified
using the prototype in line with our method.

ACKNOWLEDGMENT

This paper is supported by NSFC (No. 61070212,
No.61003195), Natural Science Foundation of Zhejiang
Province, China (No. Y1090114), the State Key Program of
Major Science and Technology (Priority Topics) of
Zhejiang Province, China (No 2010Cl1050).

REFERENCES

[11 MessageLabslSymantec Hosted Services. http://www.messagelabs.m
essagelabs.comlintelligence.aspx.

[2] P. Szor. The Art of Computer: Virus Research and Defense.
Symantec Press, NJ, USA, first edition, 2005.

[3] Shanhu Shang, Ning Zhen, Jian Xu, Ming Xu and Haiping Zhang.
Detecting mal ware variants via function-call graph similarity. In 5th
malicious and unwanted software (malware), 2010: 113-120.

[4] PEiD 0.95, http://www.peid.info/. 2010.

[5] UPX 3.05, http://upx.sourceforge.net/, 20 I O.

[6] IDA Pro 5.5, http://www.hex-rays.comlidapro/. 2010.

[7] A. Karnik, S. Goswami, and R. Guha, Detecting Obfuscated Viruses
Using Cosine Similarity Analysis, First Asia International
Conference on Modelling & Simulation (AMS'07), Phuket: IEEE
Computer Society, 2007, pp. 165 - 170.

[8] M. Christodorescu, S. Jha, and C. Kruegel. Mining Specifications of
Malicious Behavior. In Proceedings of the 6th ESECIFSE, September
2007.

[9] Jian Li, Ming Xu, Ning Zheng, Jian Xu. Malware Obfuscation
Detection via Maximal Patterns. Intelligent Information Technology
Application (IITA). 2009:324-328.

[10] M. Gheorghescu. An Automated Virus Classification System. In
Virus Bulletin Conference October 2005, pages 294-300, 2005.

[11] A. Kapoor and 1. Spurlock. Binary Feature Extraction And
Comparison. In Presentation at A VAR 2006, Auckland, December
3-5,2006.

[12] R. Tian, L.M. Batten, S.C. Versteeg. Function Length as a Tool for
Malware Classification. In 3 td malicious and unwanted software
(mal ware), 2008:69-76.

[13] Q. Zhang and D. Reeves. MetaAware: Identifying Metamorphic
Malware. In Proceedings of the 23th Annual Computer Security
Applications Conference (ACSAC'07), pages 411-420, December
2007.

[14] K. Jeong and H. Lee. Code Graph for Malware Detection. In
Information Networking. ICOIN. International Conference on, Jan
2008.

[15] Jusuk Lee, Kyoochang Jeong, and Heejo Lee. Detecting
Metamorphic Malwares using Code Graphs. SAC '10 Proceedings of
the 2010 ACM Symposium on Applied Computing.

[16] VX heavens. http://vx.netlux.org.

[17] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna. Static
Disassembly of Obfuscated Binaries. In Proceedings of the 13 th
USENIX Security Symposium, pages 255-270, Auguest 2004.

